您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 7-12.doi: 10.6040/j.issn.1671-9352.0.2014.484

• 论文 • 上一篇    下一篇

具有PH(n)理赔时间间隔的Sparre-Andersen 模型中的分红问题

刘晓   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2014-10-30 修回日期:2015-03-26 出版日期:2015-06-20 发布日期:2015-07-31
  • 作者简介:刘晓(1981-),男,博士,讲师,研究方向为随机控制与精算学.E-mail:yjjatyjjat@163.com
  • 基金资助:
    安徽省哲学社会科学规划资助项目(AHSK11-12D128);安徽省教育厅自然科学研究重点项目(KJ2012ZD01);安徽省自然科学基金资助项目(1308085QA14);国家自然科学基金资助项目(11371321,11201005,11201006)

Dividend problems in a Sparre-Andersen model with PH(n) interclaim times

LIU Xiao   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China
  • Received:2014-10-30 Revised:2015-03-26 Online:2015-06-20 Published:2015-07-31

摘要: 假设盈余过程描述为Sparre-Andersen模型, 理赔时间间隔服从PH(n)分布, 分红只在一些随机的观测时间支付, 分红策略为障碍策略,得到了期望折现分红和破产时间Laplace变换所满足的积分-微分方程组,并在n=2和指数理赔的假设下给出了方程组的求解方法。

关键词: Sparre-Andersen模型, PH(n)分布, 分红, 随机观测

Abstract: Assuming that the surplus process is described by a Sparre-Andersen model, the interclaim times are PH(n) distributed, dividends can only be paid at some randomized observation times and the dividends are paid according to a barrier strategy, the integro-differential equations for the expected discounted dividends and the Laplace transform of ruin time were derived. The solutions of the equations were given with exponentially distributed claims and n=2.

Key words: Sparre-Andersen model, PH(n) distribution, dividend, randomized observation

中图分类号: 

  • O211
[1] De FINETTI B. Su un impostazione alternativa dell teoria collectiva del rischio[J]. Transaction of the 15th International Congress of Actuaries, 1957, 2:433-443.
[2] AVANZI B. Strategies for dividend distribution:a review[J]. North American Actuarial Journal, 2009, 13(2):217-251.
[3] ALBRECHER H, THONHAUSER S. Optimality results for dividend problems in insurance[J]. RACSAM Revista de la Real Academia de Ciencias: Serie A, Matematicas, 2009, 103(2):295-320.
[4] ALBRECHER H, CHEUNG E C K, THONHAUSER S. Randomized observation periods for the compound Poisson risk model:dividends[J]. Astin Bulletin, 2011, 41(2):645-672.
[5] ALBRECHER H, GERBER H U, SHIU E S W. The optimal dividend barrier in the Gamma-Omega model[J]. European Actuarial Journal, 2011, 1(1):43-55.
[6] ALBRECHER H, BUERLE N, THONHAUSER S. Optimal dividend-payout in random discrete time[J]. Statistics and Risk Modeling, 2011, 28(3):251-276.
[7] LIU Xiao, CHEN Zhenlong. Dividend problems in the dual model with diffusion and exponentially distributed observation time[J]. Statistics and Probability Letters, 2014, 87:175-183.
[8] WANG Cuilian, LIU Xiao. Dividend problems in the diffusion model with interest and exponentially distributed observation time[J]. Journal of Applied Mathematics, 2014, 2014:814835.1-814835.2.
[9] WANG Cuilian, LIU Xiao, XU Lin. The optimal dividend and capital injection strategies in the classical risk model with randomized observation periods[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(6): 661-672.
[10] ALBRECHER H, BOXMA O J. On the discounted penalty function in a Markov-dependent risk model[J]. Insurance: Mathematics and Economics, 2005, 37(3):650-672.
[11] REN Jiandong. The discounted joint distribution of the surplus prior to ruin and the deficit at ruin in a Sparre Andersen model[J]. North American Actuarial Journal, 2007, 11(3):128-136.
[12] LI Shuanming. The time of recovery and the maximum severity of ruin in a Sparre-Andersen model[J]. North American Actuarial Journal, 2008, 12(4):413-427.
[13] CHEUNG E C K. Discussion of “Moments of the Dividend Payments and Related Problems in a Markov-Modulated Risk Model”[J]. North American Actuarial Journal, 2007, 11(4):145-148.
[1] 陈洁, 吕玉华. 带分红的稀疏风险模型的期望折现罚金函数[J]. 山东大学学报(理学版), 2015, 50(09): 78-83.
[2] 王翠莲, 刘晓. 带投资和周期分红的布朗运动模型中的分红问题[J]. 山东大学学报(理学版), 2015, 50(05): 74-81.
[3] 徐怀. 对偶风险模型最优分红值的离散估计方法[J]. J4, 2012, 47(5): 115-121.
[4] 孙景云. 门限分红策略下复合Poisson风险模型的绝对破产[J]. J4, 2010, 45(3): 105-110.
[5] 花兆秀,牛明飞 . 在索赔额相依的风险模型中的阈值分红策略[J]. J4, 2008, 43(10): 91-96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!