您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (07): 45-53.doi: 10.6040/j.issn.1671-9352.3.2014.076

• 论文 • 上一篇    下一篇

面向框架语义分析的目标词自动识别方法

陈亚东, 洪宇, 杨雪蓉, 王潇斌, 姚建民, 朱巧明   

  1. 苏州大学计算机科学与技术学院, 江苏 苏州 215006
  • 收稿日期:2015-03-05 出版日期:2015-07-20 发布日期:2015-07-31
  • 通讯作者: 洪宇(1978-),男,副教授,主要研究领域为话题检测、信息检索和信息抽取.E-mail:tianxianer@gmail.com E-mail:tianxianer@gmail.com
  • 作者简介:陈亚东(1990-),男,硕士研究生,主要研究领域为信息抽取.E-mail:chinachenyadong@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(61373097, 61272259, 61272260)

Automatic target identification in frame semantic parsing

CHEN Ya-dong, HONG Yu, YANG Xue-rong, WANG Xiao-bin, YAO Jian-min, ZHU Qiao-ming   

  1. School of Computer Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
  • Received:2015-03-05 Online:2015-07-20 Published:2015-07-31

摘要: 提出了一种基于监督学习的目标词自动识别方法,分析并检验了多种区分目标词、框架元素和非实义词的分类特征,并在此基础上,联合使用监督学习与规则匹配方法,形成了兼顾扩展性和精确性的目标词识别系统。在FrameNet语料集的实验结果显示,融合方法的目标词识别获得了3.86%的性能提升。

关键词: 框架语义, 目标词识别, 监督学习, 框架目标词

Abstract: An automatic target identification method is introduced by analyzing some classification features to distinguish target words, frame elements and non-substantive words. A scalable and accurate target identification system is obtained. The experiment results on FrameNet prove that the joint method gains 3.86% in target identification.

Key words: frame semantics, target identification, supervised learning, frame target

中图分类号: 

  • TP391
[1] COLLIN F B, CHARLES J F, JOHN B L. The berkeley framenet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics-Volume 1. Stroudsburg, PA, USA: Association for Computational Linguistics, 1998: 86-90.
[2] GEORGE A M. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11):39-41.
[3] DONG Zhendong, DONG Qiang. How Net and the computation of meaning[M]. Singapore: World Scientific, 2006.
[4] KARIN Kipper, HOA T D, MARTHA Palmer. Class-based construction of a verb lexicon[C]//Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. Austin, TX, USA: AAAI Press, 2000: 691-696.
[5] SHI Lei, RADA Mihalcea. Putting pieces together: combining FrameNet, VerbNet and WordNet for robust semantic parsing[C]//Computational Linguistics and Intelligent Text Processing. Berlin: Springer, 2005: 100-111.
[6] ANA M Giuglea, ALESSANDRO Moschitti. Shallow semantic parsing based on FrameNet, VerbNet and PropBank[C]//Proceedings of the 2006 conference on ECAI. Amsterdam: IOS Press, 2006: 563-567.
[7] MARCO Pennacchiotti, DIEGO D Cao, ROBERTO Basili, et al. Automatic induction of FrameNet lexical units[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2008: 457-465.
[8] SARA Tonelli, DANIELE Pighin. New features for FrameNet: WordNet mapping[C]//Proceedings of the Thirteenth Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2009: 219-227.
[9] RICHARD Johansson, PIERRE Nugues. LTH: semantic structure extraction using nonprojective dependency trees[C]//Proceedings of the 4th International Workshop on Semantic Evaluations. Stroudsburg: Association for Computational Linguistics, 2007: 227-230.
[10] DIPANJAN Das, NATHAN Schneider, DESAI Chen, et al. Probabilistic frame-semantic parsing[C]//Human language technologies: the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 948-956.
[11] LIN Dekang. Automatic retrieval and clustering of similar words[C]//Proceedings of the 17th international conference on Computational linguistics-Volume 2. Stroudsburg: Association for Computational Linguistics, 1998: 768-774.
[12] CHARLES J. Fillmore. Frame semantics and the nature of language[J]. Annals of the New York Academy of Sciences, 1976:20-32.
[1] 张鹏,王素格,李德玉,王杰. 一种基于启发式规则的半监督垃圾评论分类方法[J]. 山东大学学报(理学版), 2017, 52(7): 44-51.
[2] 黄天意,祝峰. 基于流形学习的代价敏感特征选择[J]. 山东大学学报(理学版), 2017, 52(3): 91-96.
[3] 苏丰龙,谢庆华,黄清泉,邱继远,岳振军. 基于直推式学习的半监督属性抽取[J]. 山东大学学报(理学版), 2016, 51(3): 111-115.
[4] 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!