您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 72-77.doi: 10.6040/j.issn.1671-9352.0.2014.485

• 论文 • 上一篇    下一篇

奇异φ-Laplacian周期边值问题解的存在性

徐嫚   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2014-11-04 出版日期:2015-08-20 发布日期:2015-07-31
  • 作者简介:徐嫚 (1989- ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:xmannwnu@126.com
  • 基金资助:
    国家自然科学基金资助项目(11361054); 甘肃省自然科学基金资助项目(1208RJZA258)

Existence of solutions for singular φ-Laplacian of periodic boundary value problems

XU Man   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-11-04 Online:2015-08-20 Published:2015-07-31

摘要: 考虑了奇异 φ-Laplacian 周期边值问题

解的存在性, 其中 φ:(-a, a)→R是单调递增的同胚且 φ(0)=0, 0< a <+∞, gC(R,R), eC[0,T], s 是一个参数.主要结果的证明基于紧集连通理论及Leray-Schauder度理论.

关键词: 紧集连通理论, Leray-Schauder 度, -Laplacian, &phi, 周期边值问题

Abstract: We consider the existence of solutions for singular φ-Laplacian of periodic boundary value problems
???20150812-01???
where φ:(-a,a)→R(0< a <+∞) is an increasing homeomorphism such that φ(0)=0, gC(R,R), eC[0,T], and s is a parameter. The proof of the main result is based on the continuation theorem and Leray-Schauder degree arguments.

Key words: periodic boundary value problems, continuation theorem, Leray-Schauder degree, φ-Laplacian

中图分类号: 

  • O175.8
[1] BEREANU C, GHEORGHE D, ZAMORA M. Non-resonant boundary value problems with singular φ-Laplacian operators[J]. Nonlinear Differential Equations and Applications, 2013, 20(3):1365-1377.
[2] MACCOLL L A. Theory of the relativistic oscillator[J]. American Journal of Physics, 1957, 25(8):535-538.
[3] GRENIER W. Classical mechanics-point particles and relativity[M]. Berlin: Springer, 2004.
[4] BEREANU C, MAWHIN J. Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ[J]. Nonlinear Analysis, 2008, 68(2):1668-1681.
[5] BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian[J]. Journal of Differential Equations, 2007, 243(2):536-557.
[6] BEREANU C, MAWHIN J. Boundary-value problems with non-surjective φ-Laplacian and one-sided bounded nonlinearity[J]. Advance in Differential Equations, 2006, 11(1):35-60.
[7] LAZER A C, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities[J]. Proceedings of the American Mathematical Society, 1987, 99(1):109-114.
[8] MANÁSEVICH R, MAWHIN J. Boundary value problems for nonlinear peturbations of vector p-Laplacian-like operators[J]. Journal of Korean Mathmatical Society, 2000, 37:665-685.
[9] BEREANU C, MAWHIN J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and -Laplacian[J]. Nonlinear Differential Equations and Applications, 2008, 15(1-2):159-168.
[10] BEREANU C, GHEORGHE D, ZAMORA M. Periodic solutions for singular perturbations of the singular φ-Laplacian operator[J]. Communications in Contemporary Mathematics, 2013, 15(4):1-22.
[11] MAWHIN J, REBELLO C, ZANOLIN F. Continuation throrems for Ambrosetti-Prodi type periodic problems[J]. Communications in Contemporary Mathematics, 2000, 2(1):87-126.
[12] MASSABÓ I, PEJSACHOWICZ J. On the connectivity properties of the solution set of parametrized families of compact vector fields[J]. Journal of Functional Analysis, 1984, 59(2):151-166.
[1] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[2] 张瑞敏,林迎珍. 多点周期边值问题新的再生核方法[J]. J4, 2013, 48(12): 42-46.
[3] 方海琴,刘锡平*,林乐刚. 分数阶微分方程反周期边值问题解的存在性[J]. J4, 2012, 47(6): 5-9.
[4] 张明,路慧芹 . 二阶非线性脉冲周期边值问题多个正解的存在性[J]. J4, 2009, 44(4): 51-56 .
[5] 姚庆六. 非线性三阶边值问题的正周期解[J]. J4, 2009, 44(2): 14-18.
[6] 祁英华,祁爱琴 . 一类时滞微分方程周期边值问题及其最大最小解[J]. J4, 2007, 42(7): 66-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!