您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 78-89.doi: 10.6040/j.issn.1671-9352.0.2014.410

• 论文 • 上一篇    下一篇

广义神经传播方程最低阶新混合元格式的高精度分析

樊明智1, 王芬玲1, 石东洋2   

  1. 1. 许昌学院数学与统计学院, 河南 许昌 461000;
    2. 郑州大学数学与统计学院, 河南 郑州 450001
  • 收稿日期:2014-09-16 出版日期:2015-08-20 发布日期:2015-07-31
  • 作者简介:樊明智(1969- ), 男, 硕士, 教授, 研究方向为有限元方法及应用研究. E-mail:mathfanmz@163.com
  • 基金资助:
    国家自然科学基金(11271340); 河南省教育厅自然科学基金项目(14A110009);许昌市科技局项目(1404009)

High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations

FAN Ming-zhi1, WANG Fen-ling1, SHI Dong-yang2   

  1. 1. School of Mathematics and Statistics, Xuchang University, Xuchang 461000, Henan, China;
    2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2014-09-16 Online:2015-08-20 Published:2015-07-31

摘要: 利用双线性元和Nédéle?s元,对广义神经传播方程建立了最低阶自然满足Brezzi-Babuška条件的新混合元逼近格式.基于该混合元的高精度分析和插值后处理算子技术,在半离散格式下分别导出了原始变量的H1模及中间变量的L2模的超逼近性质和整体超收敛结果.当f(u)=f(X)时建立了一个具有二阶精度的全离散逼近格式,分别得到了原始变量的H1模的超逼近性和中间变量的L2模的最优误差估计.

关键词: 半离散和全离散格式, 超逼近性和超收敛结果, 广义神经传播方程, 新混合元

Abstract: A lowest order new mixed element approximate scheme with the bilinear element and Nédélec?s element for the generalized nerve conductive equations is proposed, which can satisfy Brezzi-Babuška condition automatically. Based on high accuracy analysis of the mixed element and interpolation post-processing technique, the superclose properties and superconvergence results of original variable in H1-norm and intermediate variable in L2-norm are deduced separately for semi-discrete scheme. At the same time, a second order fully-discrete scheme when is f(u) equal to f(X) is established and the superclose properties and the optimal order error estimates of original variable in H1-norm and intermediate variable in L2-norm are separately derived.

Key words: superclose properties and superconvergence results, new mixed element, the generalized nerve conductive equations, semi-discrete and fully-discrete schemes

中图分类号: 

  • O242.21
[1] 梅茗. 高维广义神经传播方程Cauchy问题整体光滑解[J]. 应用数学学报, 1991, 14(4):450-461. MEI Ming. Global smooth solutions of the Cauchy problem for generalized equations of pulse transmi ssion type with higer dimension[J]. Acta Math Appl Sin, 1991, 14(4):450-461.
[2] 崔霞. 广义神经传播方程的A.D.I.有限元分析[J]. 应用数学学报, 1999, 22(4):628-633. CUI Xia. A.D.I finite element analysis of the generalized nerve conductive equations[J]. Acta Math Appl Sin, 1999, 22(4):628-633.
[3] 石东洋,郝颖. 广义神经传播方程的一个各向异性非协调有限元超收敛分析[J]. 生物数学学报, 2009, 24(2):279-286. SHI Dongyang, HAO Ying. Superconvergence analysis of an anisotropic nonconforming finite element to the generalized nerve conductive equations[J]. J Biomath, 2009, 24(2):279-286.
[4] 王萍莉, 石东洋. 广义神经传播方程非协调类Wilson元的超收敛分析及外推[J].生物数学学报, 2013, (4):672-680. WANG Pinli, SHI Dongyang. Superconvergence analysis and extrapolations of nonconforming quasi-Wilson element to the generalized nerve conductive equations[J]. J Biomath, 2013, (4):672-680.
[5] 张斐然, 石东洋, 陈金环. 广义神经传播方程的非协调变网格有限元方法[J]. 应用数学学报, 2012, 35(3):471-482. ZHANG Feiran, SHI Dongyang, CHEN Jinhuan. Nonconforming finite element method for generalized nerve conductive equations on moving grids[J]. Acta Math Appl Sin, 2012, 35(3):471-482.
[6] 吴志勤, 王芬玲, 石东洋. 广义神经传播方程一个新的超收敛估计及外推[J].数学的实践与认识, 2011, 41(15):234-240. WU Zhiqin, WANG Fenling, SHI Dongyang. A new superconvergence analsis and exerapolation for generalized nerve conductive equations[J]. Math Pract Theory, 2011, 41(15):234-240.
[7] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2):213-218. CHEN Shaochun, CHEN Hongru. New mixed element schemes for second order elliptic problem[J]. Math Numer Sin, 2010, 32(2):213-218.
[8] 史峰, 于佳平, 李开泰. 椭圆型方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2):231-237. SHI Feng, YU Jiaping, LUO Zhendong. Anew mixed finite element scheme of elliptic equations[J]. Chin J Engin Math, 2011, 28(2):231-236.
[9] 李磊, 孙萍, 罗振东. 抛物方程一种新混合有限元格式及误差分析[J]. 数学物理学报, 2012, 32A(6):1158-1165. LI Lei, SUN Ping, LUO Zhendong. A new mixed finite element formulation and error estimates for parabolic equations[J]. Acta Math Scientia, 2012, 32A(6):1158-1165.
[10] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报, 2014, 37(1):45-58. SHI Dongyang, LI Minghao. High accuracy analsis of new schemes for second order eiiiptic problem for recurrent event data[J]. Acta Math Appl Sin, 2012, 32A(6):1158-1165.
[11] SHI Dongyang, LI Minghao. Superconvergence anaalysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. J Comput Math, 2014, 32(2):205-214.
[12] SHI Dongyang, ZHANG Yadong. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equation[J]. Appl Math Comput, 2011, 218(7):3176-3186.
[13] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定:河北大学出版社, 1996. Construction and analysis for effective finite element Methods[M]. Baoding: Hebei University Press, 1996.
[14] LIN Qun, TOBISKA Lutz, ZHOU Aihui. Superconvergence and extrapolation of nonconformimg low order finite elements applied to the Poisson equation[J]. IMA J Numer Anal, 2005, 25(1):160-181.
[15] SHI Dongyang, MAO Shipeng, CHEN Shaochun. An anisotropic nonconforming finite element with some superconvergence results[J]. J Comput Math, 2005, 23(3):261-274.
[16] SHI Dongyang, WANG Haihong, DU Yueping. An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations[J]. J Comput Math, 2009, 27(2-3):299-314.
[17] 石东洋, 王芬玲, 史艳华. 各向异性EQ1rot非协调元高精度分析的一般格式[J]. 计算数学, 2013, 35(3):239-252. SHI Dongyang, WANG Fenling, SHI Yanhua. General scheme of high accuracy analysis for an anisotropic EQ1rot nonconforming element[J]. Math Numer Sin, 2013, 35(3):239-252.
[18] WANG Lieheng. On the error estimate of nonconforming finite element approximation to the obstacle problem[J]. J Comput Math, 2003, 21(4):481-490.
[1] 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98.
[2] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!