您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 113-118.doi: 10.6040/j.issn.1671-9352.0.2014.592

• 论文 • 上一篇    下一篇

网络演化博弈的策略一致性

葛美侠, 李莹, 赵建立, 邢海云   

  1. 聊城大学数学科学学院, 山东 聊城 252056
  • 收稿日期:2014-12-28 修回日期:2015-07-22 出版日期:2015-11-20 发布日期:2015-12-09
  • 通讯作者: 李莹(1974-),女,副教授,研究方向为系统分析与优化.E-mail:liyingld@163.com E-mail:liyingld@163.com
  • 作者简介:葛美侠(1987-),女,硕士,研究方向为矩阵与博弈论.E-mail:gemeixia1122@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(11171226,11301247);山东省自然科学基金资助项目(ZR2012FQ005)

Strategy consensus of networked evolutionary games

GE Mei-xia, LI Ying, ZHAO Jian-li, XING Hai-yun   

  1. College of Mathematics and Science, Liaocheng University, Liaocheng 252056, Shandong, China
  • Received:2014-12-28 Revised:2015-07-22 Online:2015-11-20 Published:2015-12-09

摘要: 研究了网络演化博弈达到稳定状态时的一种策略形式。根据策略更新规则,利用矩阵的半张量积方法把网络演化博弈表示为离散时间k-值逻辑动态系统,并通过研究k值逻辑网络分析网络演化博弈的动态行为。给出了网络演化博弈策略一致性的充要条件,为继续探讨网络演化博弈的其他性质提供了理论依据。

关键词: 网络演化博弈, 矩阵的半张量积, 策略更新规则, 策略一致性

Abstract: The strategy consensus of networked evolutionary games was considered. According to the strategy updating rule, the profile of the networked evolutionary game was expressed as a k-valued logical dynamic system by using the semi-tensor product of matrices, and this system was used to analyze the dynamic behaviors of it. Finally, the strategy consensus of the networked evolutionary game was obtained, which provides theory basis for continued to explore the property of networked evolutionary games.

Key words: strategy consensus, network evolutionary game, semi-tensor product of matrices, strategy updating rule

中图分类号: 

  • O151
[1] NOWAK M A, MAY R M. Evolutionary games and spatial chaos[J].Nature, 1992, 359:826-829.
[2] NOWAK M A, MAY R M.The spatial dilemmas of evolution[J].Int J Bifu Chaos, 1993, 3(1):35-78.
[3] SZABO G, TOKE C. Evolutionary prisoner's dilemma game on a square lattice[J].Physical Review E, 1998, 58(1):69-73.
[4] SANTOS F C, SANTOS M D, PACHECO J M. Social diversity promotes the emergence of cooperation in public goods games[J].Nature, 2008, 454(7201):213-216.
[5] 程代展,齐洪胜.矩阵的半张量积——理论与应用[M].2版. 北京:科学出版社,2011. CHENG Daizhan, Qi Hongsheng. Exhibition on behalf of half tensor matrix product-theory and application[M].2nd ed. Beijing:Science Press, 2011.
[6] CHENG Daizhan. Input-state approach to Boolean networks[J]. IEEE Transactions on Neural New, 2009, 20:512-521.
[7] LI Fangfei, SUN Jitao. Stability and stabilization of multivalued logical network[J]. Nonlinear Analysis:Real World Applications, 2011, 12(6):3701-3712.
[8] LIU Zhenbin, WANGYuzhen. General logical expression of k-valued and Mix-valued Pseudo-logical functions[C]//Proceedings of the 31st Chinese Control Conference.[S.l.]:[s.n.], 2012.
[9] CHENG Daizha, HE Fenghua, QI Hongsheng, et al. Modeling, analysis andcontrol of networked evolutionary games[J].IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415
[10] LJUNG L, SODERSTROM T. Theory and practice of recursive identication[M]. Cambridge:the MIT Press, 1982.
[11] CHENG Daizhan, QI Hongsheng, HE Fenghua, et al. Semi-tensor product approach to networked evolutionary games[J].Control Theory Tech, 2014, 12(2):198-214.
[12] QI Hongsheng, CHENG Daizhan, DONG Hairong. On networked evolutionary games-part 1:formulation[C]//Proceedings of the 19th IFAC World Congress. Cape Town:IFAC, 2014:275-280.
[13] CHENG Daizhan, HE Fenghua, XU Tingting. On networked evolutionary games-part 2:dynamics and control[C]//Proceedings of the 19th IFAC World Congress. Cape Town:IFAC, 2014:281-286.
[14] 吴敏,何勇.时滞系统鲁棒控制-自由权矩阵方法[M]. 北京:科学出版社,2008. WU Min, HE Yong. Robust control of delay systems-liberty matrix method[M]. Beijing:Science Press, 2008.
[1] 邢海云,赵建立. 变异机制在网络演化博弈中的应用[J]. 山东大学学报(理学版), 2016, 51(12): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!