您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 1-5.doi: 10.6040/j.issn.1671-9352.0.2015.213

• •    下一篇

相对于幺半群的α-斜Armendariz环

耿道宏1,王尧1,任艳丽2*   

  1. 1.南京信息工程大学数学与统计学院, 江苏 南京 210044;2.南京晓庄学院数学与信息技术学院, 江苏 南京 211171
  • 收稿日期:2015-05-02 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 任艳丽(1965— ), 女, 硕士, 教授, 研究方向为环论. E-mail:renyanlisx@163.com E-mail:gengdaohong@163.com
  • 作者简介:耿道宏(1991— ), 男, 硕士, 研究方向为环论. E-mail:gengdaohong@163.com
  • 基金资助:
    国家自然科学基金资助项目(41275117);江苏省自然科学基金资助项目(BK20141476)

α-skew Armendariz rings relative to a monoid

GENG Dao-hong1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Received:2015-05-02 Online:2016-02-16 Published:2016-03-11

摘要: 引入了α-斜M-Armendariz环的概念。讨论了α-M-Armendariz环与相关环的关系,证明了在α-M-Armendariz环条件下,Baer环(右p.p.-环,右zip环)的斜幺半群环扩张仍然是Baer环(右p.p.-环,右zip环)。

关键词: p.p.-环, Baer环, zip环, α-斜M-Armendariz环, 斜幺半群环

Abstract: The concept of α-skew M-Armendariz rings is introduced. The relationship between α-skew M-Armendariz rings and related rings is investigated, and it is proved that the skew monoid ring extension of a Baer ring(right p.p.-ring, right zip ring)is a Baer ring(right p.p.-ring, right zip ring)in case the ring is an α-skew M-Armendariz.

Key words: skew monoid ring, Baer ring, α-skew M-Armendariz ring, zip ring, p.p.-ring

中图分类号: 

  • O153.3
[1] REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Proc Japan Acad Ser A Math Sci, 1997, 73(1):14-17.
[2] HONG C Y, KIM N K, KWAK T K. On skew Armendariz rings[J]. Comm Algebra, 2003, 31(1):103-122.
[3] LIU Zhongkui. Armendariz rings relative to a monoid[J]. Comm Algebra, 2005, 33(3):649-661.
[4] OUYANG Lunqun. On weak annihilator ideals of skew monoid rings[J]. Comm Algebra, 2011, 39(11):4259-4272.
[5] HASHEMI E, MOUSSAVI A. Polynomial extensions of quasi-Baer rings[J]. Acta Math Hungar, 2005, 107(3):207-224.
[6] BIRKENMEIER G F, PARK J K. Triangular matrix representations of ring extensions[J]. J Algebra, 2003, 265(2):457-477.
[7] FAITH C. Rings with zero intersection property on annihilators: zip rings[J]. Publ Math, 1989, 33:329-338.
[8] CORTES W. Skew polynomial extensions over zip rings[J]. Int J Math Sci, 2008, 9(10):1-9.
[1] 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81.
[2] 王尧1, 姜美美1, 任艳丽2*. 斜多项式环的一些性质[J]. 山东大学学报(理学版), 2014, 49(06): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!