您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (7): 74-80.doi: 10.6040/j.issn.1671-9352.1.2015.094

• • 上一篇    下一篇

基于SVM的电子商务行为的性别判断

彭秋芳,刘洋   

  1. 山东大学软件学院, 山东 济南 250000
  • 收稿日期:2015-11-14 出版日期:2016-07-20 发布日期:2016-07-27
  • 作者简介:彭秋芳(1993— ),硕士研究生,研究方向为大数据处理.E-mail:penghelen@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(61272092,61572289);山东省自然科学基金资助项目(ZR2012FZ004,ZR2015FM002);山东省科技发展计划基金资助项目(2014GGE27178);国家重点基础研究发展计划(973计划)项目(2015CB352500);泰山学者计划基金资助项目

Research of gender prediciton based on SVM with E-commerce data

PENG Qiu-fang, LIU Yang   

  1. Software College, Shandong University, Jinan 250000, Shandong, China
  • Received:2015-11-14 Online:2016-07-20 Published:2016-07-27

摘要: 不同性别的用户对产品的看法与品位存在着差异,特别是在欣赏与时尚相关的产品上,性别对用户判断的影响显得尤为重要。根据电子商务中在线商品的浏览记录,采用支持向量机(support vector machines, SVM)对所选取的7个特征建立模型,并进行性别判断。经过模型分析和训练,准确率可达79.21%。同时讨论了网络购物与实体店购物的区别,并对SVM进行了核函数对比及其它性能的研究,从理论和实际应用上为核函数的选取和SVM的选用提供参考。

关键词: 支持向量机, 性别判断, 性能研究, 电子商务

Abstract: Different gender of Users have different view on products, particularly in appreciation of fashion related products, the gender influence is much important. This paper used seven characteristics choosed from online based e-commerce product browsing history data and used support vector machines(SVM)set model by these seven characteristics to predict users' gender. By analysing and training the model, accuracy of gender prediction reached up to 79.21%.While taking advantage of the problem, the paper discusseed the differences between online shopping and offline shopping and do the research about the kernel function of support vector machine and other performance, give the theory and practice reference for the selection of kernel functions and selection of support vector machine.

Key words: E-commerce, performance study, SVM, gender prediction

中图分类号: 

  • TP393
[1] 惠红, 丁钢, 敬阳. 网购休闲行为性别差异研究[J]. 电子商务, 2010(2):17-19. HUI Hong, DING Gang, JING Yang. Research on gender differences in online shopping leisure behavior[J]. Electronic Commerce, 2010(2):17-19.
[2] 张姝姝, 张智光. 网购行为性别差异与网络营销策略[J]. 南京林业大学学报:人文社会科学版, 2012, 12(2):94-99. ZHANG Shushu, ZHANG Zhiguang. Gender difference in online shopping behavior and strategy research on network marketing[J]. Journal of Nanjing Forestry University(Humanities and Social Sciences Edition), 2012, 12(2):94-99.
[3] SEOCK Y K, BAILEY L R. The influence of college students' shopping orientations and gender differences on online information searches and purchase behaviours[J]. International Journal of Consumer Studies, 2008, 32(2):113-121.
[4] 张小英. 购物中心消费者行为的性别差异研究——以广州市为例[J]. 商业时代, 2014(16):16-18. ZHANG Xiaoying. Gender differences in consumer behavior of shopping centers: a case study of Guangzhou city[J]. Commercial Age, 2014(16):16-18.
[5] 蒋欢, 周发明. 影响网络购物意向因素的性别差异研究[J]. 企业技术开发:学术版, 2010, 29(7):90-91. JIANG Huan, ZHOU Faming. The research pm factors affecting online shopping intention of different gender[J]. Technological Development of Enterprise, 2010, 29(7):90-91.
[6] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10. DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1):2-10.
[7] HASSAN U K, NAWI N M, KASIM S. Classify a protein domain using sigmoid support vector machine[C] //Proceedings of ICISA. New York: IEEE, 2014: 1-4.
[8] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 247-259.
[9] TANG T, GUO Q, YANG M. Support vector machine based particle swarm optimization localization algorithm in WSN[J]. Journal of Convergence Information Technology, 2012, 7(1):497-503.
[10] 孙刚, 王志平, 王明新. 一种提高支持向量机性能的特征选择新方法[J]. 计算机工程与应用, 2008, 44(3):183-185. SUN Gang, WANG Zhiping, WANG Mingxin. New feature selection method of improve performance of SVM[J]. Computer Engineering and Application, 2008, 44(3):183-185.
[11] POWERS D M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. Journal of Machine Learning Technologies, 2008, 2:2229-3981.
[12] BARANDELA R, VALDOVINOS R M, SÁNCHEZ J S, et al. The imbalanced training sample problem: under or over sampling?[J]. Structural, Syntactic, and Statistical Pattern Recognition, 2004, 3138: 806-814.
[1] 苏丰龙,谢庆华,黄清泉,邱继远,岳振军. 基于直推式学习的半监督属性抽取[J]. 山东大学学报(理学版), 2016, 51(3): 111-115.
[2] 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57.
[3] 高晓波,方献梅,李石君. 基于因子分解机的信任感知商品推荐[J]. 山东大学学报(理学版), 2016, 51(1): 89-94.
[4] 祝瑞. 一种基于信任度的电子商务社区聚类模型[J]. 山东大学学报(理学版), 2015, 50(05): 18-22.
[5] 杜瑞颖, 杨勇, 陈晶, 王持恒. 一种基于相似度的高效网络流量识别方案[J]. 山东大学学报(理学版), 2014, 49(09): 109-114.
[6] 刘飚1,2,陈春萍3,封化民1,3,李洋3. 基于Fisher准则的SVM参数选择算法[J]. J4, 2012, 47(7): 50-54.
[7] 曹林林1,2,张化祥1,2*,王至超1,2. 一种基于信息熵数据修剪的支持向量机:EB-SVM[J]. J4, 2012, 47(5): 59-62.
[8] 肖雪梅1,张仁津1,2*. 基于SOA的旅游电子商务系统安全模型的研究[J]. J4, 2011, 46(9): 81-84.
[9] 张宁仙,郭敏*,马苗. 基于AR模型和SVM的果蝇振翅声分类[J]. J4, 2011, 46(7): 83-86.
[10] 宋玉丹,王士同*. 基于特征缺省的最小类内方差支持向量机[J]. J4, 2010, 45(7): 102-107.
[11] 易超群,李建平,朱成文. 一种基于分类精度的特征选择支持向量机[J]. J4, 2010, 45(7): 119-121.
[12] 杨冰,王士同*. 基于公共矢量的总间隔v最小类内方差支持向量机在噪音人脸图像分类中的应用[J]. J4, 2010, 45(11): 5-11.
[13] 曹 鸿,董守斌,张 凌 . 基于加权策略的SVM多元分类器[J]. J4, 2006, 41(3): 66-69 .
[14] 林煜明,李 优 . 基于SVM的句子组块识别[J]. J4, 2006, 41(3): 112-115 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!