山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (9): 145-150.doi: 10.6040/j.issn.1671-9352.2.2015.230
• • 上一篇
王国辉, 杜小妮*, 万韫琦, 李芝霞
摘要: 结合Gray映射和分圆理论,在Z4上构造了一类周期为pq的广义分圆序列。在有限域Fr(r≥5为奇素数)上确定新序列对应的傅里叶谱序列,并基于傅里叶谱序列的重量来确定新序列的线性复杂度。 结果表明, 该序列具有良好的线性复杂度性质, 能够抗击B-M算法的攻击, 是密码学意义上性质良好的伪随机序列。
中图分类号:
[1] GOLOMB S W, GONG G. Signal design for good correlation: for wireless communication, cryptography and radar applications[M]. Cambridge: Cambridge University Press, 2005:174-175. [2] MASSEY J L. Shift registers synthesis and BCH decoding[J]. IEEE Transactions on Information Theory, 1969, 15(1):122-127. [3] TANG X, DING C. New classes of balanced quaternary sequences and almost balanced binary sequences with optimal autocorrelation value[J]. IEEE Transactions on Information Theory, 2010, 56(12):6398-6405. [4] CHUNG J H, HAN Y K, YANG K. New quaternary sequences with even period and three valued autocorrelation[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2010, 93-A(1):309-315. [5] LIM T, NO J S, CHUNG H. New construction of quaternary sequences with good correlation using binary with good correlation[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2011, 94-A(8): 1701-1705. [6] YANG Z, KE Pinhui. Construction of quaternary sequences of lengthpqwith low correlation[J]. Cryptography and Communications, 2011, 3(2): 55-64. [7] EDEMSKIY V, LVANOV A. Linear complexity of quaternary sciences of length pq with low autocorrelation[J]. Journal of Computational and Applied Mathematics, 2014, 259: 555-560. [8] KE Pinhui, LIN Changlu, ZHANG Shengyuan. Linear complexity of quaternary sciences with odd period and low autocorrelation[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(5): 89-93. [9] KIM Y S, CHUNG J S, On the autocorrelation distributions of Sidelnikov sequences[J]. IEEE Transactions on Information Theory, 2005, 51(9): 3303-3307. [10] JANG J W, KIM S H. Quaternary sciences with good autocorrelation constructed by Gray mapping[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2009, 92-A(8):2139-2140. [11] CHANG Zuling, LI Dandan. On the linear complexity of the quaternary cyclotomic sequences with the period 2pq[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2014, 97-A(2):679-684. [12] KE Pinhui. New classes of quaternary cyclotomic sciences of length 2pm with high linear complexity[J]. Informations Process, Letter, 2012, 112:646-650. [13] DU Xiaoni, CHEN Zhixiong. Linear complexity of quaternary sequence generated using generalized cyclotomic classes modulo 2p[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2011, 94(5):1214-1217. [14] LI Dandan, WEN Qiaoyan. Linear complexity of generalized cyclotomic quaternary sequences with period pq[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2014, 97-A(5):1153-1158. [15] KIM Y S, JANG J W. New quaternary sequences with ideal autocorrelation constructed from legendre sequences[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2013, 96-A(9):1872-1882. |
[1] | 苏阳. 对称密码中有限域乘法运算的可重构设计[J]. 山东大学学报(理学版), 2017, 52(6): 76-83. |
[2] | 刘龙飞,杨晓元. 一类新的周期为p3的GF(l)上广义割圆序列的线性复杂度[J]. 山东大学学报(理学版), 2017, 52(3): 24-31. |
[3] | 王锦玲 兰娟丽. GF(q)上一类新型的广义自缩序列[J]. J4, 2009, 44(10): 91-96. |
[4] | 王锦玲,刘宗成 . 主控生成器[J]. J4, 2008, 43(1): 81-87 . |
|