山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 37-43.doi: 10.6040/j.issn.1671-9352.0.2017.326
黄淑芹1,2,徐勇1,王平水1
HUANG Shu-qin1, 2, XU Yong1, WANG Ping-shui1
摘要: 用户相似度计算的合理性直接影响到协同过滤推荐的效果。提出了一种基于时序行为关系的用户消费网络图构建方法,通过定义用户间非对称相似度计算方法,确定用户间的初始相似度矩阵,然后利用概率矩阵分解的方法重构用户的相似度矩阵,挖掘潜在的用户近邻,将近邻关系应用到目标用户的项目推荐中,同时提出了基于时序行为关系和矩阵分解的协同过滤推荐框架结构。在实际数据集上对具体参数进行实验,并和其他方法进行了比较。实验结果表明,该方法可以有效提高协同过滤推荐效果。
中图分类号:
[1] EKSTRAND M D, RIEDL J T, KONSTAN J A. Collaborative filtering recommender systems[J]. Foundations and Trends in Human-Computer Interaction, 2010, 4(2): 81-173. [2] LIU Qi, CHEN Enhong, XIONG Hui, et al. Enhancing collaborative filtering by user interests expansion via personalized ranking[J]. IEEE Transactions on Systems, Man and Cybernetics-part B: Cybernetics, 2012, 42(1):218-233 [3] CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems. 2013, 37:146-153 [4] SHI Y, LARSON M, HANJALIC A. Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering[C] // Proceeding of the third ACM conference on Recommender systems(RecSys’09). New York: ACM, 2009: 125-132. [5] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C] // Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann, 1998: 43-52. [6] CANDILLIER L, MEYER F, BOUllé M. Comparing state-of-the-art collaborative filtering systems[C] // Machine Learning and Data Mining in Pattern Recognition(MLDM’07). Berlin: Springerverlag Berlin, 2007: 548-562. [7] PATRA B K, LAUNONEN R, OLLIKAINEN V, et al. A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data[J]. Knowledge-Based Systems, 2015, 82:163-177. [8] KOUTRICA G, BERCOVITZ B, GARCIA H. FlexRecs: expressing and combining flexible recommendations[C] // Proceedings of the 35th SIGMOD International Conference on Management of Data Providence. New York: ACM, 2009: 745-757. [9] CACHEDA F, CARNEIRO V, FERNÁNDEZ D, et al. Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems[J]. ACM Transactions on the Web(TWEB), 2011, 5(1):Article 2. Doi:10.1145/1921591.1921593. [10] BOBADILLA J, SERRADILLA F, BERNAL J. A new collaborative filtering metric that improves the behavior of recommender systems[J]. Knowledge-Based Systems, 2010, 23:520-528. [11] LIU HAIFENG, HU ZHENG, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014, 56:156-166. [12] SHARDANAND U. Social information filtering for music recommendation[D]. Boston: Massachusetts Institute of Technology, 1994. [13] AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J]. Information Sciences, 2008, 178(1):37-51. [14] PIRASTEH P, HWANG D, JUNG J J. Exploiting matrix factorization to asymmetric user similarities in recommendation systems[J]. Knowledge-Based Systems, 2015, 83:51-57. [15] JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C] // Proceedings of the 4th ACM conference on Recommender Systems(RecSys’10). New York: ACM, 2010: 135-142. [16] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C] // International Conference on Neural Information Processing Systems(NIPS’07). Cambridge: MIT, 2007: 1257-1264. [17] 孙光福,吴乐,刘淇,等.基于时序行为的协同过滤推荐算法[J] ,软件学报,2013,24(11):2721-2733. SUN Guangfu, WU Le, LIU Qi, et al. Recommendations based on collaborative filtering by exploiting sequential behavior[J]. Journal of Software, 2013, 24(11):2721-2733. |
[1] | 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21. |
[2] | 倪展,吴群英*,施生塔. ND序列下最近邻密度估计的强相合速度[J]. J4, 2012, 47(12): 6-9. |
[3] | 蒋盛益1,庞观松2,张建军3. 基于聚类的垃圾邮件识别技术研究[J]. J4, 2011, 46(5): 71-76. |
[4] | 杨洋,王立宏*,刘其成. 一种主动式的半监督最近邻学习方法[J]. J4, 2011, 46(5): 110-115. |
|