您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 49-54.doi: 10.6040/j.issn.1671-9352.0.2016.191

• • 上一篇    下一篇

Felbin模糊赋范线性空间上一类模糊有界算子

常晓璇,纪培胜*   

  1. 青岛大学数学与统计学院, 山东 青岛 266071
  • 收稿日期:2016-04-28 出版日期:2017-02-20 发布日期:2017-01-18
  • 通讯作者: 纪培胜(1967— ),男,博士,教授,研究方向为泛函分析. E-mail:jipeish@yahoo.com E-mail:1542481538@qq.com
  • 作者简介:常晓璇(1991— ),女,硕士研究生,研究方向为泛函分析. E-mail:1542481538@qq.com

Class of fuzzy bounded operators in Felbins type fuzzy normed linear spaces

CHANG Xiao-xuan, JI Pei-sheng*   

  1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-04-28 Online:2017-02-20 Published:2017-01-18

摘要: 提出了Felbin模糊赋范线性空间上一类模糊有界算子的模糊范数的定义,指出了此类模糊有界算子构成模糊赋范线性空间,研究了此空间赋此模糊范数的拓扑结构和完备性。

关键词: 模糊泛函分析, 完备性, 模糊范数, 模糊赋范线性空间

Abstract: The definition of the fuzzy norm of a class of fuzzy bounded operators in Felbins type fuzzy normed spaces is introduced. Furthermore,it is showed that the class of fuzzy bounded operators endowed with this fuzzy norm is still a fuzzy normed space, and its topological structure as well as completeness is studied.

Key words: fuzzy functional analysis, fuzzy norm, completeness, fuzzy normed linear space

中图分类号: 

  • O177.99
[1] FELBIN C.Finite dimensional fuzzy normed linear space[J]. Fuzzy Sets and Systems, 1992, 48(2): 239-248.
[2] KALEVA O, SEIKKALA S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229.
[3] XIAO Jianzhong, ZHU Xinghua. Fuzzy normed space of operators and its completeness[J]. Fuzzy Sets and Systems, 2003, 133(3): 389-399.
[4] XIAOJianzhong, ZHUXinghua. On linearly topological structure and property offuzzy normed linear space[J]. Fuzzy Sets and Systems, 2002, 125(2): 153-161.
[5] 定光桂.泛函分析新讲[M].北京:科学出版社,2007. DING Guanggui. New functional analysis[M]. Beijing: Science Press, 2007.
[6] BAG T, SAMANTA S K. Fuzzy bounded linear operators in Felbins type fuzzy normed linear spaces[J]. Fuzzy Sets and Systems, 2008, 159(6): 685-707.
[7] ZADEN L A. Fuzzy sets[J]. Information and Control, 1965, 8(65): 338-353.
[8] BAG T, SAMANTA S K. Fuzzy bounded linear operators[J]. Fuzzy Sets and Systems, 2005, 151(3): 513-547.
[9] KATSARAS A K. Fuzzy topological vector spaces[J]. Fuzzy Sets and Systems, 1981, 6(1): 85-95.
[10] BAG T, SAMANTA S K. Finite dimensional fuzzy normed spaces[J]. Fuzzy Math, 2003, 11(3): 687-705.
[1] 谢维奇1,2,刘道广1,张丽2. 内P-集合的代数性质[J]. J4, 2011, 46(3): 69-72.
[2] 段景瑶 王国俊. 关于K的三种模糊模态逻辑[J]. J4, 2008, 43(12): 31-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!