山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 49-54.doi: 10.6040/j.issn.1671-9352.0.2016.191
常晓璇,纪培胜*
CHANG Xiao-xuan, JI Pei-sheng*
摘要: 提出了Felbin模糊赋范线性空间上一类模糊有界算子的模糊范数的定义,指出了此类模糊有界算子构成模糊赋范线性空间,研究了此空间赋此模糊范数的拓扑结构和完备性。
中图分类号:
[1] FELBIN C.Finite dimensional fuzzy normed linear space[J]. Fuzzy Sets and Systems, 1992, 48(2): 239-248. [2] KALEVA O, SEIKKALA S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229. [3] XIAO Jianzhong, ZHU Xinghua. Fuzzy normed space of operators and its completeness[J]. Fuzzy Sets and Systems, 2003, 133(3): 389-399. [4] XIAOJianzhong, ZHUXinghua. On linearly topological structure and property offuzzy normed linear space[J]. Fuzzy Sets and Systems, 2002, 125(2): 153-161. [5] 定光桂.泛函分析新讲[M].北京:科学出版社,2007. DING Guanggui. New functional analysis[M]. Beijing: Science Press, 2007. [6] BAG T, SAMANTA S K. Fuzzy bounded linear operators in Felbins type fuzzy normed linear spaces[J]. Fuzzy Sets and Systems, 2008, 159(6): 685-707. [7] ZADEN L A. Fuzzy sets[J]. Information and Control, 1965, 8(65): 338-353. [8] BAG T, SAMANTA S K. Fuzzy bounded linear operators[J]. Fuzzy Sets and Systems, 2005, 151(3): 513-547. [9] KATSARAS A K. Fuzzy topological vector spaces[J]. Fuzzy Sets and Systems, 1981, 6(1): 85-95. [10] BAG T, SAMANTA S K. Finite dimensional fuzzy normed spaces[J]. Fuzzy Math, 2003, 11(3): 687-705. |
[1] | 谢维奇1,2,刘道广1,张丽2. 内P-集合的代数性质[J]. J4, 2011, 46(3): 69-72. |
[2] | 段景瑶 王国俊. 关于K的三种模糊模态逻辑[J]. J4, 2008, 43(12): 31-39. |
|