您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 73-76.doi: 10.6040/j.issn.1671-9352.0.2016.027

• • 上一篇    下一篇

四阶微分方程奇异边值问题解的唯一性

崔玉军,赵聪   

  1. 山东科技大学数学与系统科学学院, 山东 青岛 266590
  • 收稿日期:2016-01-19 出版日期:2017-02-20 发布日期:2017-01-18
  • 作者简介:崔玉军(1972— ), 男, 博士, 教授, 研究方向为非线性泛函分析. E-mail:sdustcyj@163.com
  • 基金资助:
    国家自然科学基金资助项目(11371221,11571207);高等学校博士学科点专硕科研基金(20123705110001);泰山学者优势特色学科人才团队支持计划资助项目;山东省高校科研创新团队资助

Uniqueness of solution for singular boundary value problems of fourth-order differential equations

  1. College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2016-01-19 Online:2017-02-20 Published:2017-01-18

摘要: 讨论了奇异边值问题{x(4)(t)-h(t)f(x(t))=0, 00-范数以及压缩映射原理来给出上述边值问题的唯一解。

关键词: 唯一解, 压缩映射原理, u0-范数, 奇异边值问题

Abstract: We investigate the uniqueness of solution for{x(4)(t)-h(t)f(x(t))=0, 0h(t) is allowed to be singular at both t=0 and t=1. The main novelty of this paper is that the Lipschitz constant is related to the first eigenvalues corresponding to the relevant operators. We show the uniqueness of solution by applying the u0-norm and contraction mapping principle.

Key words: uniqueness of solution, u0-norm, contraction mapping principle, singular boundary value problem

中图分类号: 

  • O175.8
[1] MA Ruyun, WU Hongping. Positive solutions of a fourth-order two-point boundary value problem[J]. Applied Mathematics and Computation, 2002, 22(2):407-420.
[2] 崔玉军,孙经先,邹玉梅. 奇异四阶微分方程边值问题的正解[J]. 数学研究与评论, 2009, 65(2):376-380. CUI Yujun, SUN Jingxian, ZOU Yumei. Positive solutions of singular boundary value problems of fourth-order differential equations[J]. Journal of Mathematical Research and Exposition, 2009, 65(2):376-380.
[3] YAO Qingliu. Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J]. Applied Mathematics Letters, 2004, 17(2):237-243.
[4] 张文丽. 四阶变参数微分方程边值问题解的存在性[J]. 山西师范大学学报(自然科学版), 2010, 24(2):20-23. ZHANG Wenli. Existence of Solutions to fourth-order boundary value problem with variable parameters[J]. Journal of Shanxi Normal University(Natural Science Edition), 2010, 24(2):20-23.
[5] CRASTA G, MALUSA A. Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory[J]. Journal of Differential Equations, 2015, 259(8):3656-3682.
[6] ABBAS M. Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputos fractional derivatives[J]. Advances in Difference Equations, 2015, 2015(1):1-19.
[7] CUI Yujun. Uniqueness of solution for boundary value problems for fractional differential equations[J]. Applied Mathematics Letters, 2016, 51:48-54.
[8] 盖功琪,苑成军. 奇异非线性四阶微分方程边值问题正解的存在唯一性[J]. 数学的实践与认识, 2009, 39(7):172-177. GAI Gongqi, YUAN Chengjun. Existence and uniqueness of positive solutions for singular fourth-order boundary value problems[J]. Math Pract Theory, 2009, 39(7):172-177.
[9] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. Boston: Academic Press, 1988.
[10] 郭大钧. 非线性泛函分析[M]. 2版.济南: 山东科学技术出版社, 2002. GUO Dajun. Nonlinear functional analysis[M]. 2nd. Jinan: Shandong Science and Technology Press, 2002.
[11] ZHANG Xinguang, LIU Lishan, WU Yonghong. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term[J]. Mathematical and Computer Modelling, 2012, 55(3-4):1263-1274.
[12] ZHANG Guowei, SUN Jingxian. Positive solutions of m-point boundary value problems[J]. J Math Anal Appl, 2004, 291(2):406-418.
[13] KRASNOSELSKII M A. Positive solutions of operator equations[M]. Netherlands: P Noordhoff Groningen, 1964.
[14] GUO Dajun, SUN Jingxian. Nonlinear integral equations[M]. Jinan: Shandong Science and Technology Press, 1987.
[15] FAZIO R. A numerical test for the existeence and uniqeness of solution of free boundery problems: uniqueness of solution of free boundery problems[J]. Applicable Analysis, 1997, 66(1-2):89-100.
[16] E卡姆克. 常微分方程手册[M]. 北京: 科学出版社, 1977. KAMKE E. Handbook of ordinary differential equations[M]. Beijing: Science Press, 1977.
[1] 方海琴,刘锡平*,林乐刚. 分数阶微分方程反周期边值问题解的存在性[J]. J4, 2012, 47(6): 5-9.
[2] 路慧芹. 一类非线性悬臂梁方程正解的存在性[J]. J4, 2011, 46(1): 81-86.
[3] 王新华, 张兴秋. 具有Sturm-Liouville边界条件的四阶奇异微分方程正解的存在性[J]. J4, 2010, 45(8): 76-80.
[4] 代丽美. 二阶脉冲微分方程奇异边值问题的正解[J]. J4, 2010, 45(2): 75-78.
[5] 刘树宽. 奇异二阶Neumann边值问题的多解性[J]. J4, 2010, 45(10): 98-103.
[6] 周韶林. 奇异三阶m点边值问题的可解性[J]. J4, 2010, 45(10): 93-97.
[7] 代丽美. 正指数Emden-Fowler方程脉冲奇异边值问题的PC1([0,1],R+)正解[J]. J4, 2008, 43(12): 10-14.
[8] 唐秋云,杨 缙,刘衍胜 . Banach空间中非线性奇异脉冲微分方程边值问题的正解[J]. J4, 2007, 42(1): 14-18 .
[9] 徐夫义,苏华,王健 . Laplacian非线性奇异边值问题正解的存在性[J]. J4, 2006, 41(5): 100-103 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!