山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (3): 51-59.doi: 10.6040/j.issn.1671-9352.0.2016.030
邓小方1,2,钟元生1*,吕琳媛3,王明文4,熊乃学1
DENG Xiao-fang1,2, ZHONG Yuan-sheng1*, L(¨overU)Lin-yuan3, WANG Ming-wen4, XIONG Nai-xue1
摘要: 在互联网信息推荐应用中,恰当地结合用户的社交信息能够进一步提升推荐的精度。 以用户为枢纽节点将社交网络和用户-商品二部图融合为耦合网络,并在此基础上提出了一种基于物质扩散动力过程的推荐算法,该算法将社交网络的朋友信息和用户选择商品的信息进行有机集成,是经典物质扩散算法的一种拓展。 在真实数据集Friendfeed和Epinions上的实验表明,在只计算小度用户的推荐准确率时,该方法比经典的物质扩散算法分别提高了38.48%和9.17%;当测试集所占比例为80%时,对于所有目标用户,算法较经典物质扩散算法的推荐准确率分别提高59.05%和21.62%。 因此,社交网络信息的加入可以显著提高对小度用户的推荐准确度。
中图分类号:
[1] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3):215-239. [2] L(¨overU)Linyuan, MEDO M, YEUNG Chi Ho, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49. [3] RECKER M M, WILEY D A. A non-authoritative educational metadata ontology for filtering and recommending learning objects[J]. Interactive Learning Environments, 2001, 9(3):255-271. [4] LIU Fengkun, LEE Hong Joo. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7):4772-4778. [5] SCHEIN A I, POPESCUL A, UNGAR L H, et al. Methods and metrics for cold-start recommendations[C] //Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2002:253-260. [6] CELLI F, DI LASCIO F M L, MAGNANI M, et al. Social network data and practices:the case of friend feed[C] //International Conference on Social Computing, Behavioral Modeling, and Prediction. Berlin: Springer, 2010: 346-353. [7] MASSA P, AVESANI P. Trust-aware bootstrapping of recommender systems[C] //Proceedings of ECAI 2006 Workshop on Recommender Systems.[S.l] :[s.n.].2006: 29-33. [8] ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):046115. [9] YANG Xiwang, GUO Yang, LIU Yong, et al. A survey of collaborative filtering based social recommender systems [J]. Computer Communications, 2014, 41(5):1-10. [10] TANG Jiliang, HU Xia, LIU Huan. Social recommendation: a review [J]. Social Network Analysis and Mining, 2013, 3(4):1113-1133. [11] KAUTZ H, SELMAN B, SHAH M. Referral Web: combining social networks and collaborative filtering[J]. Communications of the ACM, 1997, 40(3):63-65. [12] CAI Xiongcai, BAIN M, KRZYWICKI A, et al. Collaborative filtering for people to people recommendation in social networks[M]. Berlin: Springer, 2010. [13] YU Le, PAN Rong, LI Zhangfeng. Adaptive social similarities for recommender systems[C] //Proceedings of the 5th ACM Conference on Recommender Systems. New York:ACM, 2011:257-260. [14] 郭磊, 马军, 陈竹敏, 等. 一种结合推荐对象间关联关系的社会化推荐算法[J]. 计算机学报, 2014, 37(1):219-228. GUO Lei, MA Jun, CHEN Zhumin, et al. Incorporating item relations for social recommendation[J]. Chinese Journal of Computers, 2014, 37(1):219-228. [15] JAMALI M, ESTER M. A transitivity aware matrix factorization model for recommendation in social networks[C] //International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2011, 11:2644-2649. [16] JIANG Meng, CUI Peng, LIU Rui, et al. Social contextual recommendation[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 45-54. [17] LIU Xin, ABERER K. SoCo: a social network aided context-aware recommender system[C] //Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 781-802. [18] MA Hao, ZHOU Dengyong, LIU Chao, et al. Recommender systems with social regularization[C] //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 287-296. [19] YANG Xiwang, STECK H, LIU Yong. Circle-based recommendation in online social networks[C] //Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1267-1275. [20] NOEL J, SANNER S, TRAN K N, et al. New objective functions for social collaborative filtering[C] //Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 859-868. [21] CUI Peng, WANG Fei, LIU Shaowei, et al. Who should share what?: item-level social influence prediction for users and posts ranking[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 185-194. [22] YANG Shuanghong, LONG Bo, SMOLA A, et al. Like like alike: joint friendship and interest propagation in social networks[C] //Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011:537-546. [23] LI Wujun, YEUNG Dityan. Relation regularized matrix factorization[C] // Proceedings of the 21st International Joint Conference on Artificial Intelligence(IJCAI-09). New York: ACM, 2009: 1126-1131. [24] MA Hao, YANG Haixuan. LYU M R. Sorec: social recommendation using probabilistic matrix factorization[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2008:931-940. [25] MA Hao, KING I, LYU M R. Learning to recommend with social trust ensemble[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009:203-210. [26] RENDLE S. Factorization machines[C] //Proceedings of the 10th IEEE International Conference on Data Mining(ICDM 2010). Los Alamitos: IEEE Computer Society, 2010:995-1000. [27] RENDLE S. Social network and click-through prediction with factorization machines[J]. Proceedings of the KDD Cup Workshop. New York: ACM Press, 2012. [28] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6):1356-1372. MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommender systems[J]. Journal of Software, 2015, 26(6):1356-1372. [29] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011:635-644. [30] HONG L J, DOUMITH A S, DAVISON B D. Co-factorization machines: modeling user interests and predicting individual decisions in twitter[C] //Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:557-566. [31] HE Jianming, CHU W W. A social network-based recommender system(SNRS)[M]. Berlin: Springer, 2010. [32] LI Hui, WU Dingming, MAMOULIS N. A revisit to social network-based recommender systems[C] //Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2014:1239-1242. [33] ZHOU Tao, KUSCSIK Z, LIU Jianguo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems [J]. Proceedings of the National Academy of Sciences, 2010, 107(10):4511-4515. [34] MCNEE S M, RIEDL J, KONSTAN J A. Being accurate is not enough: how accuracy metrics have hurt recommender systems[C] //Proceedings of CHI'06 Extended Abstracts on Human factors in Computing Systems. New York:ACM, 2006:1097-1101. [35] NIE Dacheng, ZHANG Zike, ZHOU Junlin, et al. Information filtering on coupled social networks[J]. PloS One, 2014, 9(7):e101675. |
[1] | 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103. |
[2] | 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91. |
[3] | 祝升,周斌,朱湘. 综合用户相似性与话题时效性的影响力用户发现算法[J]. 山东大学学报(理学版), 2016, 51(9): 113-120. |
[4] | 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76. |
|