您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (3): 51-59.doi: 10.6040/j.issn.1671-9352.0.2016.030

• • 上一篇    下一篇

融合社交网络的物质扩散推荐算法

邓小方1,2,钟元生1*,吕琳媛3,王明文4,熊乃学1   

  1. 1. 江西财经大学信息管理学院, 江西 南昌 330013;2. 江西师范大学软件学院, 江西 南昌 330022;3. 杭州师范大学阿里巴巴复杂科学研究中心, 浙江 杭州 310036; 4. 江西师范大学计算机信息工程学院, 江西 南昌 330022
  • 收稿日期:2016-10-11 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 钟元生(1968— ),男,博士,教授,博士生导师,研究方向为电子商务信誉管理.E-mail:zhong.ys@163.com E-mail:dxf@jxnu.edu.cn
  • 作者简介:邓小方(1980— ),男,博士研究生,研究方向为复杂网络、推荐算法.E-mail:dxf@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71662014,71661015);国家科技支撑计划项目(2015BAH50F02);江西省软科学研究计划重点项目(2016BBA10015);江西省社科规划项目(16GL08,16GL09);江西高校人文与社会科学项目(JC1543)

Mass diffusion on coupled social networks

DENG Xiao-fang1,2, ZHONG Yuan-sheng1*, L(¨overU)Lin-yuan3, WANG Ming-wen4, XIONG Nai-xue1   

  1. 1. College of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, Jiangxi, China;
    2. School of Software, Jiangxi Normal University, Nanchang 330022, Jiangxi, China;
    3. Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China;
    4. College of Computer Science, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • Received:2016-10-11 Online:2017-03-20 Published:2017-03-20

摘要: 在互联网信息推荐应用中,恰当地结合用户的社交信息能够进一步提升推荐的精度。 以用户为枢纽节点将社交网络和用户-商品二部图融合为耦合网络,并在此基础上提出了一种基于物质扩散动力过程的推荐算法,该算法将社交网络的朋友信息和用户选择商品的信息进行有机集成,是经典物质扩散算法的一种拓展。 在真实数据集Friendfeed和Epinions上的实验表明,在只计算小度用户的推荐准确率时,该方法比经典的物质扩散算法分别提高了38.48%和9.17%;当测试集所占比例为80%时,对于所有目标用户,算法较经典物质扩散算法的推荐准确率分别提高59.05%和21.62%。 因此,社交网络信息的加入可以显著提高对小度用户的推荐准确度。

关键词: 物质扩散, 社交网络, 推荐算法

Abstract: In the Internet information recommendation application, combining the users social information into recommend systems may further enhance the recommendation accuracy. We transform the social network and the user-commodity bipartite network into a coupled network by considering users as hub nodes and then propose a recommendation algorithm based on the process of mass diffusion dynamics, which integrates the information of friends in the social network and the information of the users selection of items in the user-item bipartite network. It can easily be seen that our approach is an extension of the classical mass diffusion algorithm. Experiments on the real datasets, Friendfeed and Epinions show that the recommendation accuracy of small degree users is improved by 38.48% and 9.17% respectively by comparing our proposed method with the classical mass diffusion algorithm. When the proportion of probe set is 80%, the improvement on recommendation accuracy is 59.05% and 21.62% than that of the classical material diffusion algorithm for all target users. Therefore, the addition of social network information can significantly improve the recommendation accuracy for small degree users.

Key words: mass diffusion, social networks, recommender systems

中图分类号: 

  • TP391
[1] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3):215-239.
[2] L(¨overU)Linyuan, MEDO M, YEUNG Chi Ho, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49.
[3] RECKER M M, WILEY D A. A non-authoritative educational metadata ontology for filtering and recommending learning objects[J]. Interactive Learning Environments, 2001, 9(3):255-271.
[4] LIU Fengkun, LEE Hong Joo. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7):4772-4778.
[5] SCHEIN A I, POPESCUL A, UNGAR L H, et al. Methods and metrics for cold-start recommendations[C] //Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2002:253-260.
[6] CELLI F, DI LASCIO F M L, MAGNANI M, et al. Social network data and practices:the case of friend feed[C] //International Conference on Social Computing, Behavioral Modeling, and Prediction. Berlin: Springer, 2010: 346-353.
[7] MASSA P, AVESANI P. Trust-aware bootstrapping of recommender systems[C] //Proceedings of ECAI 2006 Workshop on Recommender Systems.[S.l] :[s.n.].2006: 29-33.
[8] ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):046115.
[9] YANG Xiwang, GUO Yang, LIU Yong, et al. A survey of collaborative filtering based social recommender systems [J]. Computer Communications, 2014, 41(5):1-10.
[10] TANG Jiliang, HU Xia, LIU Huan. Social recommendation: a review [J]. Social Network Analysis and Mining, 2013, 3(4):1113-1133.
[11] KAUTZ H, SELMAN B, SHAH M. Referral Web: combining social networks and collaborative filtering[J]. Communications of the ACM, 1997, 40(3):63-65.
[12] CAI Xiongcai, BAIN M, KRZYWICKI A, et al. Collaborative filtering for people to people recommendation in social networks[M]. Berlin: Springer, 2010.
[13] YU Le, PAN Rong, LI Zhangfeng. Adaptive social similarities for recommender systems[C] //Proceedings of the 5th ACM Conference on Recommender Systems. New York:ACM, 2011:257-260.
[14] 郭磊, 马军, 陈竹敏, 等. 一种结合推荐对象间关联关系的社会化推荐算法[J]. 计算机学报, 2014, 37(1):219-228. GUO Lei, MA Jun, CHEN Zhumin, et al. Incorporating item relations for social recommendation[J]. Chinese Journal of Computers, 2014, 37(1):219-228.
[15] JAMALI M, ESTER M. A transitivity aware matrix factorization model for recommendation in social networks[C] //International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2011, 11:2644-2649.
[16] JIANG Meng, CUI Peng, LIU Rui, et al. Social contextual recommendation[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 45-54.
[17] LIU Xin, ABERER K. SoCo: a social network aided context-aware recommender system[C] //Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 781-802.
[18] MA Hao, ZHOU Dengyong, LIU Chao, et al. Recommender systems with social regularization[C] //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 287-296.
[19] YANG Xiwang, STECK H, LIU Yong. Circle-based recommendation in online social networks[C] //Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1267-1275.
[20] NOEL J, SANNER S, TRAN K N, et al. New objective functions for social collaborative filtering[C] //Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 859-868.
[21] CUI Peng, WANG Fei, LIU Shaowei, et al. Who should share what?: item-level social influence prediction for users and posts ranking[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 185-194.
[22] YANG Shuanghong, LONG Bo, SMOLA A, et al. Like like alike: joint friendship and interest propagation in social networks[C] //Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011:537-546.
[23] LI Wujun, YEUNG Dityan. Relation regularized matrix factorization[C] // Proceedings of the 21st International Joint Conference on Artificial Intelligence(IJCAI-09). New York: ACM, 2009: 1126-1131.
[24] MA Hao, YANG Haixuan. LYU M R. Sorec: social recommendation using probabilistic matrix factorization[C] //Proceedings of the 21th ACM International Conference on Information and Knowledge Management. New York: ACM, 2008:931-940.
[25] MA Hao, KING I, LYU M R. Learning to recommend with social trust ensemble[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009:203-210.
[26] RENDLE S. Factorization machines[C] //Proceedings of the 10th IEEE International Conference on Data Mining(ICDM 2010). Los Alamitos: IEEE Computer Society, 2010:995-1000.
[27] RENDLE S. Social network and click-through prediction with factorization machines[J]. Proceedings of the KDD Cup Workshop. New York: ACM Press, 2012.
[28] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6):1356-1372. MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommender systems[J]. Journal of Software, 2015, 26(6):1356-1372.
[29] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011:635-644.
[30] HONG L J, DOUMITH A S, DAVISON B D. Co-factorization machines: modeling user interests and predicting individual decisions in twitter[C] //Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:557-566.
[31] HE Jianming, CHU W W. A social network-based recommender system(SNRS)[M]. Berlin: Springer, 2010.
[32] LI Hui, WU Dingming, MAMOULIS N. A revisit to social network-based recommender systems[C] //Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2014:1239-1242.
[33] ZHOU Tao, KUSCSIK Z, LIU Jianguo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems [J]. Proceedings of the National Academy of Sciences, 2010, 107(10):4511-4515.
[34] MCNEE S M, RIEDL J, KONSTAN J A. Being accurate is not enough: how accuracy metrics have hurt recommender systems[C] //Proceedings of CHI'06 Extended Abstracts on Human factors in Computing Systems. New York:ACM, 2006:1097-1101.
[35] NIE Dacheng, ZHANG Zike, ZHOU Junlin, et al. Information filtering on coupled social networks[J]. PloS One, 2014, 9(7):e101675.
[1] 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103.
[2] 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91.
[3] 祝升,周斌,朱湘. 综合用户相似性与话题时效性的影响力用户发现算法[J]. 山东大学学报(理学版), 2016, 51(9): 113-120.
[4] 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!