您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 73-82.doi: 10.6040/j.issn.1671-9352.0.2017.313

• • 上一篇    下一篇

Q-并代数范畴中的投射对象

王海伟,赵彬*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 收稿日期:2017-06-21 出版日期:2018-02-20 发布日期:2018-01-31
  • 通讯作者: 赵彬(1965— ),男,博士,教授,研究方向为格上拓扑与非经典数理逻辑.E-mail: zhaobin@snnu.edu.cn E-mail:wanghw@snnu.edu.cn
  • 作者简介:王海伟(1992— ),男,硕士研究生,研究方向为格上拓扑与非经典数理逻辑.E-mail: wanghw@snnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(11531009);中央高校基本科研业务费专项资金项目(GK201501001)

The projective objects in the category of Q-sup-algebras

WANG Hai-wei, ZHAO Bin*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2017-06-21 Online:2018-02-20 Published:2018-01-31

摘要: 引入了Q-并代数范畴中的K-flat投射对象的概念,并且给出了Q-并代数范畴中K-flat投射对象的等价刻画,证明了Q是Q-并代数范畴中的K-flat投射对象当且仅当Q有余代数结构。

关键词: Q-并代数, 余代数, K-flat投射对象

Abstract: The concept of K-flat projective objects in the category of Q-sup-algebras is introduced, and we give some equivalent characterizations on the object. We prove that Q is a K-flat projective Q-sup-algebra if and only if Q has a coalgebra structure.

Key words: coalgebra, Q-sup-algebra, K-flat projective object

中图分类号: 

  • O153.1
[1] BANASCHEWSKI B. Projective frames: a general view [J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 2005, 46(4): 301-312.
[2] PASEKA J. Projective quantales: a general view[J]. International Journal of Theoretical Physics, 2008, 47(1): 291-296.
[3] RESENDE P. Tropological systems and observational logic in concurrency and specification[D]. Gompo Grande: Universidade Técnica de Lisboa, 1997.
[4] PASEKA J. Projective sup-algebras: a general view[J]. Topology and its Applications, 2008, 155(4): 308-317.
[5] ZHANG Xia, LAAN Valdis. Quotients and subalgebras of sup-algebras[J]. Proceedings of the Estonian Academy of Sciences, 2015, 64(3): 311-322.
[6] BĚLOHLÁVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002.
[7] FAN Lei. A new approach to quantitative domain theory[J]. Electronic Notes in Theoretical Computer Science, 2001, 45(1): 77-87.
[8] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1): 105-112.
[9] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1): 118-131.
[10] ADÁMEK J, HERRLICH H, STRECKER G E. Abstract and concrete categories[M]. New York: Wiley Interscience, 1990.
[11] GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
[12] ROSENTHAL K I. Quantales and their applications[M]. New York: Longman Scientific & Technical, 1990.
[13] BLOOM S L. Varieties of ordered algebras[J]. Journal of Computer and System Sciences, 1976, 13(2): 200-212.
[14] YAO Wei. Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete posets[J]. Fuzzy Sets and Systems, 2010, 161(7): 973-987.
[1] 付雪荣,姚海楼. 三角矩阵余代数上的倾斜余模[J]. 山东大学学报(理学版), 2016, 51(4): 25-29.
[2] 徐爱民. 关于Gorenstein内射余模[J]. 山东大学学报(理学版), 2016, 51(12): 7-9.
[3] 王正萍, 杨仁明. 弱Hopf群余代数的可裂扩张[J]. 山东大学学报(理学版), 2015, 50(12): 121-126.
[4] 陈华喜, 张崔斌, 董丽红. 广义Lie代数的Kegel定理[J]. 山东大学学报(理学版), 2014, 49(10): 38-44.
[5] 陈华喜1, 殷晓斌2. Hopf π-余模余代数的对偶[J]. J4, 2011, 46(12): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!