您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (8): 17-24.doi: 10.6040/j.issn.1671-9352.4.2018.052

• • 上一篇    下一篇

区间集概念格属性约简的组成与结构

张恩胜   

  1. 鞍山师范学院数学与信息科学学院, 辽宁 鞍山 114007
  • 收稿日期:2018-04-15 出版日期:2018-08-20 发布日期:2018-07-11
  • 作者简介:张恩胜(1963— ), 男, 硕士, 副教授, 研究方向为形式概念分析. E-mail:zhangensheng@126.com

Composition and structure on attribute reduction of interval-set concept lattices

ZHANG En-sheng   

  1. College of Mathematics and Information Science, Anshan Normal University, Anshan 114007, Liaoning, China
  • Received:2018-04-15 Online:2018-08-20 Published:2018-07-11

摘要: 区间集是解决部分已知概念、近似不可定义或复杂概念的研究工具。概念格是机器学习、数据挖掘、知识发现和信息检索等领域的一种很有效的数据分析工具。区间集概念格是这两种方法的结合,是对于部分已知概念或不可定义概念信息系统进行机器学习、数据挖掘、知识发现和信息检索的一种有效的数据分析工具。区间集属性约简是揭示区间集概念格本质特征的一种方法。本文揭示了区间集属性约简的组成与结构:两个区间集相对必要属性不能在同一个区间集属性约简中出现;区间集约简与任何一个区间集相对必要属性等价类的交都不空;核心属性和每个区间集相对必要属性等价类中取一个属性组成的集合一定是区间集属性约简。

关键词: 区间集, 区间集概念格, 属性约简

Abstract: Interval-set provides a research tool for processing partially known concepts and for approximating undefinable or complex concepts. Concept lattices is a powerful tool for data analysis in machine learning, data mining, knowledge discovery, information retrieval, and so on. Interval-set concept lattices is the product of the combination concept lattices and the interval-set theory,which is a powerful tool for data analysis in machine learning, data mining, knowledge discovery and information retrieval on the information systems of partially known concepts or undefinable concepts. The attribute reduction of interval-set concept lattices is a kind of the method which reveals the elementary character of interval-set concept lattices attribute. This paper reveals the composition and structure of the attribute reduction of interval-set concept lattices. The equivalence relative necessary attributes are not in the same attribute reduction; and the intersection of attribute reduction and any relative necessary attribute equivalence class is nonempty. The set of the core attributes and the relative necessary attributes chosen by taking an attribute from each relative necessary attribute equivalence class must be an attribute reduction.

Key words: interval-set, interval-set concept lattices, attribute reduction

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]. Dordrecht: Reidel Publishing Company, 1982: 445-470.
[2] 张文修,魏玲,祁建军. 概念格的属性约简理论与方法[J]. 中国科学(信息科学),2005,35(6):628-639. ZHANG Wenxiu, WEI Ling, QI Janjun. Attribute reduction theory and approach to concept lattice[J]. Science in China(Information Sciences), 2005, 35(6):628-639.
[3] YAO Y Y. Interval-set algebra for qualitative knowledge representation[C] // Proceedings of the 5th International Conference on Computing and Information. Washington: IEEE, 1993: 370-374.
[4] YAO Y Y. Comparison of rough-set an interval-set models for uncertain Reasoning[J]. Fundamenta Informaticae, 1996, 27:289-298.
[5] YAO Y Y, WANG J. Interval sets and interval-set algebras[C] // Proceedings of the 8th IEEE International Conference on Cognitive Informatics. Washington: IEEE, 2009: 307-314.
[6] 姚一豫. 区间集: 云模型与粒计算[M]. 北京:科学出版社, 2012: 74-81. YAO Yiyu. Interval sets: cloud model and granular computing[M]. Beijing: Science Press, 2012: 74-81.
[7] 李金海. 形式背景与概念格: 形式概念分析理论与应用[M]. 北京:科学出版社,2016: 2-3. LI Jinhai. Formal context and concept lattice: formal concept analysis theory and application[M]. Beijing: Science Press, 2016: 2-3.
[8] 马建敏. 区间集概念格: 形式概念分析理论与应用[M]. 北京:科学出版社,2016: 69-79. MA Jianmin. Interval-set concept lattice: formal concept analysis theory and application[M]. Beijing: Science Press, 2016: 69-79.
[9] 张恩胜,顾红生,刘德仁. 形式概念格属性约简集的组成与结构[J]. 广西师范大学学报(自然科学版),2008,26(1):166-169. ZHANG Ensheng, GU Hongsheng, LIU Deren. Structure of attribute reduction set of concept lattices[J]. Journal of Guangxi Normal University(Natural Science Edition), 2008, 26(1):166-169.
[1] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[2] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[3] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[4] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[5] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[6] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[7] 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76.
[8] 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82.
[9] 丁卫平1,2,3,王建东2,段卫华2,施佺1. 一种求解属性约简优化的协同粒子群算法[J]. J4, 2011, 46(5): 97-102.
[10] 余承依,李进金*. 变精度粗糙集β下近似属性约简[J]. J4, 2011, 46(11): 17-21.
[11] 叶明全1,2, 胡学钢1,伍长荣3. 垂直划分多决策表下基于条件信息熵的隐私保护属性约简[J]. J4, 2010, 45(9): 14-19.
[12] 王彬弟,魏玲. 基于关联格的概念格约简理论[J]. J4, 2010, 45(9): 20-26.
[13] 李进金1,张燕兰2,许晴媛2 . 一般协调近似表示空间的约简[J]. J4, 2010, 45(10): 109-115.
[14] 白如江,王效岳 . 基于粗糙集理论和BP神经网络的文本自动分类方法研究[J]. J4, 2006, 41(3): 70-75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!