山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (8): 43-48.doi: 10.6040/j.issn.1671-9352.0.2017.383
刘艳芳,王玉玉*
LIU Yan-fang, WANG Yu-yu*
摘要: 利用May谱序列的相关理论对Adams谱序列的E2项,即模p Steenrod代数A的上同调进行讨论。具体给出了(~overγ)s+3b1hn(n≥4, 0≤s
中图分类号:
[1] SERRE J P. Groupes d' homotopie et classes de groupes abeliens[J]. Ann of Math, 1953, 58(2):258-294. [2] ADAMS J F. On the structrue and application of steerod algebra[J]. Comm Math Helv, 1958, 32(1):180-214. [3] ADAMS J F. Stable homotopy and generalised homology[M]. Chicago: University of Chicago Press, 1974. [4] ZHONG Linan, WANG Yuyu. Detection of a nontrivial product in the stable homotopy groups of spheres[J]. Algebr Geom Topol, 2013, 13(5):3009-3029. [5] 王玉玉, 王健波. 球面稳定同伦群中的ξn相关元素的非平凡性[J]. 数学年刊(A辑), 2014, 35(5):341-348. WANG Yuyu, WANG Jianbo. The nontriviality of ξn-related elements in the stable homotopy groups of sphere[J]. Chinese Annals of Math(Ser A), 2014, 35(5):341-348. [6] WANG Yuyu, WANG Jianbo. The nontrivility of ζn-related elements in the stable homotopy groups of sphere[J]. Math Scan, 2015, 117:304-319. [7] RAVENEL D C. Complex cobordism and stable homotopy groups of spheres[M]. Orlando: Academic Press, 1986. [8] WANG Yuyu. A new familiy of flltration s+5 in the stable homotopy groups of spheres[J]. Acta Math Sci, 2008, 28(2):321-332. [9] WANG Xiangjun, ZHENG Qibing. The convergence of (~overα)(n)s h0hk[J]. Science in China, 1998, 41A(6):622-628. |
No related articles found! |
|