您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 19-25, 35.doi: 10.6040/j.issn.1671-9352.0.2018.361

• 高端论坛 • 上一篇    下一篇

球磨纳米碳酸钙去除水中铅离子的吸附机理

封振宇1(),蒋贺纯2,*()   

  1. 1. 山东大学化学与化工学院, 山东 济南 250100
    2. 山东大学晶体材料国家重点实验室, 山东 济南 250100
  • 收稿日期:2018-07-03 出版日期:2019-01-20 发布日期:2019-01-23
  • 通讯作者: 蒋贺纯 E-mail:fengzhenyu@sdu.edu.cn;jianghechun@sdu.edu.cn
  • 作者简介:封振宇(1983—),男,工程师,硕士,研究方向为环境分析化学与无机纳米材料. E-mail: fengzhenyu@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017PB007);山东大学实验室建设与管理研究项目(sy20183201);山东大学实验室建设与管理研究项目(sy20183205);山东大学实验室建设与管理研究项目(sy20181202);山东省材料化学安全检测技术重点实验室开放课题(2018SDCLHX005)

Ball-milled CaCO3 nanoparticles for removal of Pb2+ in solution

Zhen-yu FENG1(),He-chun JIANG2,*()   

  1. 1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
    2. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
  • Received:2018-07-03 Online:2019-01-20 Published:2019-01-23
  • Contact: He-chun JIANG E-mail:fengzhenyu@sdu.edu.cn;jianghechun@sdu.edu.cn
  • Supported by:
    山东省自然科学基金资助项目(ZR2017PB007);山东大学实验室建设与管理研究项目(sy20183201);山东大学实验室建设与管理研究项目(sy20183205);山东大学实验室建设与管理研究项目(sy20181202);山东省材料化学安全检测技术重点实验室开放课题(2018SDCLHX005)

摘要:

通过球磨得到了纳米级CaCO3,研究了它去除水溶液中Pb2+的吸附机制。X射线粉末衍射(XRD)结果表明,吸附后样品中含有CaCO3和PbCO3;选区电子衍射(SEAD)、扫描电镜(SEM)和透射电镜(TEM)显微成像都证实,样品中有PbCO3纳米晶粒生成,同时也存在CaCO3表面的Pb2+吸附;从宏观上探讨了吸附过程的吸附等温线和吸附动力学。结果表明,纳米级CaCO3对Pb2+的吸附作用机制是溶解-沉淀并伴有表面吸附。

关键词: 碳酸钙, 纳米材料, 铅离子, 吸附

Abstract:

Nano-sized CaCO3 granules were prepared by ball milling to remove Pb2+ in solution. The results of X-ray diffraction (XRD) clearly indicated that the products after the sorption experiments were composed of CaCO3 and PbCO3. The analysis of selected area electron diffraction (SEAD), transmission electron microscopy (TEM) mapping and scanning electron microscopy (SEM) images demonstrated the generation of PbCO3 nanocrystals and the surface-adsorption of Pb2+ on the CaCO3 adsorbents. The sorption isotherms and kinetics were also considered. All of the results indicated that the main type of interaction between Pb2+ and the as-prepared CaCO3 is dissolution-precipitation accompanied by surface-adsorption.

Key words: calcium carbonate, nanomaterials, lead ion, sorption

中图分类号: 

  • O65

图1

球磨前后CaCO3的形貌与结构表征 a:球磨前CaCO3的SEM图像; b:球磨4 h后CaCO3的SEM图像; c:球磨前后CaCO3的XRD衍射花样。"

图2

纳米级CaCO3和微米级CaCO3的吸附动力学"

表1

吸附动力学实验数据"

吸附剂 Qe/(mmol·g-1) k2/(g·mmol-1·h-1) R2
纳米级CaCO3 1.902 1.008 0.968
微米级CaCO3 1.893 0.3082 0.851

图3

纳米级CaCO3和微米级CaCO3在30 ℃时的吸附等温线"

表2

吸附等温实验数据"

吸附剂 T/K Kf/((mmol/g)·(L/mmol)1/n) 1/n R2
纳米级CaCO3 303 5.54 0.060 8 0.996
微米级CaCO3 303 4.93 0.173 0 0.980

图4

纳米级CaCO3在吸附实验后的形貌与结构表征 a:纳米级CaCO3在吸附实验后的SEM照片; b:CaCO3吸附剂在吸附前和吸附后的XRD衍射花样(JCPDS标准卡片:方解石No.47-1743,白铅矿No.47-1734)。"

表3

不同金属离子的吸附起始以及吸附平衡浓度"

金属离子 Ce-C0/(mmol·L-1)
试样1 试样2 试样3 试样4 试样5
Pb2+ -0.48 -0.82 -0.91 -0.95 -0.95
Ca2+ 0.36 0.63 0.73 0.72 0.75

图5

吸附剂在吸附实验后的电子显微学与元素分析 a和d:吸附剂在吸附实验后的TEM图像; b和e:吸附剂在吸附实验后的能谱元素分布图像; c和f:吸附实验后吸附剂的选区电子衍射花样。"

图6

吸附实验中吸附剂用量"

1 ZHANG Bintian , LU Lili , HU Qichang , et al. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+[J]. Biosensors and Bioelectronics, 2014, 56 (1): 243- 249.
2 LI Dandan , ZHOU Dongmei , WANG Peng , et al. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots[J]. Ecotoxicology and Environmental Safety, 2011, 74 (6): 874- 881.
3 SUZUKI Takashi , ISHIGAKI Kyoichi , MIYAKE Michiriro . Synthetic hydroxyapatites as inorganic cation exchangers: part 3. exchange characteristics of lead ion (Pb2+)[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80 (1): 3157- 3165.
4 CHEN Xiaobing , WRIGHT JUDITH V , CONCA JAMES L , et al. Effects of pH on heavy metal sorption on mineral apatite[J]. Environmental Science & Technology, 1997, 31 (3): 624- 631.
5 MICHIHIRO Miyake , KYOICHI Ishigaki , TAKASHI Suzuki . Structure refinements of Pb2+ ion-exchanged apatites by X-ray powder pattern-fitting[J]. Journal of Solid State Chemistry, 1986, 61 (2): 230- 235.
6 TAKEUCHI Yasushi , ARAI Hironori . Removal of coexistiong Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder[J]. Journal of Chemical Engineering of Japan, 1990, 23 (1): 75- 80.
doi: 10.1252/jcej.23.75
7 GODELITSAS A , ASTILLEROS J M , HALLAM K , et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science & Technology, 2003, 37 (5): 3351- 3358.
8 ESALAH J O , WEBER M E , VERA J H . Removal of lead from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate[J]. Separation and Purification Technology, 1999, 18 (1): 25- 36.
doi: 10.1016/S1383-5866(99)00046-5
9 ZHANG Lei , ZENG Yuexian , CHENG Zhengjun . Removal of heavy metal ions using chitosan and modified chitosan: a review[J]. Journal of Molecular Liquids, 2016, 214 (7): 175- 191.
10 AHMED Sultam , CHUGHTAI Shiraz , KEANE MARK A . The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite[J]. Separation and Purification Technology, 1998, 13 (5): 57- 64.
11 MEUNIER Nathalie , BLAIS Jean Francois , TYAGI Rajeshwar Dayal . Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter-current sorption process[J]. Hydrometallurgy, 2004, 73 (5): 225- 235.
12 ZHANG Jing , YAO Bin , PING Hang , et al. Template-free synthesis of hierarchical porous calcium carbonate microspheres for efficient water treatment[J]. RSC Advances, 2016, 6 (11): 472- 480.
13 LIU Zexiang , SHEN Qiuying , ZHANG Qiance , et al. The removal of lead ions of the aqueous solution by calcite with cotton morphology[J]. Journal of Materials Science, 2014, 49 (4): 5334- 5344.
14 YANG Shitong , REN Xxuemei , ZHAO Guixia , et al. Competitive sorption and selective sequence of Cu(Ⅱ) and Ni(Ⅱ) on montmorillonite: Batch, modeling, EPR and XAS studies[J]. Geochimica et Cosmochimica Acta, 2015, 166 (6): 129- 145.
15 UDDIN Mohammad Kashif . A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308 (9): 438- 462.
16 FAKHRE NABIL A , IBRAHIM Bnar . The use of new chemically modified cellulose for heavy metal ion adsorption[J]. Journal of Hazardous Materials, 2018, 343 (9): 324- 331.
17 KINNIBURGH D G , JACKSON M L , SYERS J K . Adsorption of alkaline earth, transiton, and heavy metal cations by hydrous oxide gels of iron and aluminum[J]. Soil Science Society of America Journal, 1976, 40 (9): 796- 799.
18 NGAH W S W , TEONG L C , HANAFIAH M . Adsorption of dyes and heavy metal ions by chitosan composites: a review[J]. Carbohydrate Polymers, 2011, 83 (1): 1446- 1456.
19 MA Xiaoming , LI Liling , YANG Lin , et al. Adsorption of heavy metal ions using hierarchical CaCO3—maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies[J]. Journal of Hazardous Materials, 2012, 209 (11): 467- 477.
20 REED B E. Removal of heavy metals by activated carbon[M]// Environmental Separation of Heavy Metals: Engineering Processes. London: CRC Press, 2002: 168.
21 KADIRVELU K , THAMARAISELVI K , NAMASIVAYAM C . Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 2001, 76 (5): 63- 65.
22 LIU Jia , WANG Hongliang , LV Chunxin , et al. Remove of heavy metals(Cu2+, Pb2+, Zn2+ and Cd2+) in water through modified diatomite[J]. Chemical Research in Chinese Universities, 2013, 29 (3): 445- 448.
doi: 10.1007/s40242-013-2504-1
23 SHENG Guodong , WANG Suowei , HU Jun . Adsorption of Pb(Ⅱ) on diatomite as affected via aqueous solution chemistry and temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339 (2): 159- 166.
24 MAVROPOULOS Elena , ROSSI Alexandre Malta , COSTA ANDRÉA M , et al. Studies on the mechanisms of lead immobilization by hydroxyapatite[J]. Environmental Science & Technology, 2002, 36 (10): 1625- 1629.
25 GARCIA-SÁNCHEZ A , ALVAREZ-AYUSO E . Sorption of Zn, Cd and Cr on calcite: application to purification of industrial wastewaters[J]. Minerals Engineering, 2002, 15 (4): 539- 547.
26 DU Yang , ZHU Lingyan , SHAN Guoqiang . Removal of Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions[J]. Journal of Colloid and Interface Science, 2012, 367 (5): 378- 382.
27 RANGEL-PORRAS G , GARCÍA-MAGNO J B , GONZÁLEZ-MUOZ M P . Lead and cadmium immobilization on calcitic limestone materials[J]. Desalination, 2010, 262 (1): 1- 10.
28 DU Yang , LIAN Fei , ZHU Lingyan . Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells[J]. Environmental Pollution, 2011, 159 (7): 1763- 1768.
doi: 10.1016/j.envpol.2011.04.017
29 CHADA VENKATA G R , HAUSNER DOUGLAS B , STRONGIN DANIEL R. , et al. Divalent Cd and Pb uptake on calcite {101(())4} cleavage faces: An XPS and AFM study[J]. Journal of Colloid and Interface Science, 2005, 288 (4): 350- 360.
30 ELZINGA EERT J , ROUFF ASHAKI A , REEDER RICHARD J . The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study[J]. Geochmica et Cosmochimica Acta, 2006, 70 (2): 2715- 2725.
31 KIM Dong-Seog , PARK Byoung-Yoon . Effects on the removal of Pb2+ from aqueous solution by crab shell[J]. Journal of Chemical Technology and Biotechnology, 2001, 76 (7): 1179- 1184.
32 KONTOYANNIS C G , VAGENAS N V . Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy[J]. Analyst, 2000, 125 (6): 251- 255.
33 BORCHERT H , SHEVCHENKO E V , ROBERT A , et al. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles[J]. Langmuir, 2005, 21 (12): 1931- 1936.
34 PRIETO Manuel , CUBILLAS Pablo , FERNÁNDEZ-GONZALEZÁ Ángeles . Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite[J]. Geochimica et Cosmochimica Acta, 2003, 67 (20): 3859- 3869.
doi: 10.1016/S0016-7037(03)00309-0
35 HO Y S , MCKAY G . The sorption of lead (Ⅱ) on peat[J]. Water Research, 1999, 33 (9): 578- 584.
36 MA Xiaoming , CUI Weigang , YANG Lin , et al. Efficient biosorption of lead(Ⅱ) and cadmium(Ⅱ) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds[J]. Bioresource Technology, 2015, 185 (1): 70- 78.
37 LIU Renlu , GUAN Yong , CHEN Liang , et al. Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3[J]. Frontiers in Microbiology, 2018, 9 (8): 41.
38 MCBRIDE M B . Chemisorption of Cd2+ on calcite surfaces1[J]. Soil Science Society of America Journal, 1980, 44 (1): 26- 28.
doi: 10.2136/sssaj1980.03615995004400010006x
39 ALI IBRAHEEM O , EL-SHEIKH SAID M , SALAMA TAREK M , et al. Controllable synthesis of NaP zeolite and its application in calcium adsorption[J]. Science China Materials, 2015, 58 (8): 621- 633.
doi: 10.1007/s40843-015-0075-9
40 WILLIAMS D B , CARTER C B . Transmission electron microscopy: a textbook for materials science[M]. Berlin: Springer Press, 1996: 575.
[1] 宋艳朵, 邵国俊, 王蕊, 茹淼焱. 导电聚酯片的制备及酸处理对导电层吸附量和黏附性的影响[J]. 山东大学学报(理学版), 2015, 50(01): 70-75.
[2] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1-22.
[3] 丁轶1,2. 纳米多孔金属:一种新型能源纳米材料[J]. J4, 2011, 46(10): 121-133.
[4] 程丹丹 许春华 印志磊 岳钦艳 王艳. 纳米β-FeOOH对水中Cr(VI)吸附性能的研究[J]. J4, 2010, 45(1): 31-35.
[5] . 新型深海中温菌Wangia profunda(SMA87)胞外多糖对对硝基苯胺的吸附研究[J]. J4, 2009, 44(5): 33-39.
[6] 李春玲,岳钦艳,李颖,孙大明. 锌(Ⅱ)、镉(Ⅱ)在伊利石上的吸附及解吸特征研究[J]. J4, 2009, 44(11): 6-11.
[7] 李 静,岳钦艳*,李 倩,高宝玉,原爱娟 . 阳离子聚合物/膨润土对苯酚的吸附及其机理研究[J]. J4, 2008, 43(9): 31-35 .
[8] 张树芹,侯万国,*,王文兴 . 对硝基苯酚在镁铝型双金属氢氧化物及其煅烧产物上的吸附[J]. J4, 2007, 42(9): 19-24 .
[9] 徐 洁,侯万国,*,周维芝,台培东,王文兴 . 东北草甸棕壤对重金属铅的吸附行为研究[J]. J4, 2007, 42(5): 50-54 .
[10] 毕研俊,李玉江*,高宝玉,吴涛,王静 . 焙烧类水滑石吸附去除水中苯酚[J]. J4, 2007, 42(5): 59-63 .
[11] 解建坤,岳钦艳*,于 慧,岳文文,李仁波,张升晓,王晓娜 . 污泥活性炭对活性艳红K-2BP染料的吸附特性研究[J]. J4, 2007, 42(3): 64-70 .
[12] 黄善兴,秦宏伟,刘 杏,张 瑞,胡季帆,蒋民华 . Nd1-xZnxFeO3纳米材料的甲烷气体气敏性研究[J]. J4, 2007, 42(3): 36-39 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[3] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28 -35 .
[4] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[5] 李守巨1,上官子昌2,3,孙伟4,栾茂田1,刘博3. 盾构机密封舱渣土非线性本构模型参数识别[J]. J4, 2010, 45(7): 24 -27 .
[6] 曾文赋1,黄添强1,2,李凯1,余养强1,郭躬德1,2. 基于调和平均测地线核的局部线性嵌入算法[J]. J4, 2010, 45(7): 55 -59 .
[7] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111 -113 .
[8] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[9] 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57 -60 .
[10] 王红妹,肖敏*,李正义,李玉梅,钱新民 . 转糖基β-半乳糖苷酶产生菌筛选和鉴定及酶催化生成低聚半乳糖[J]. J4, 2006, 41(1): 133 -139 .