《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 1-18.doi: 10.6040/j.issn.1671-9352.9.2018
• 高端论坛 • 下一篇
高娟1,王晓琳2,HOFFMANN Heinz3,郝京诚3,*
Juan GAO1,Xiao-lin WANG2,Heinz HOFFMANN3,Jing-cheng HAO3,*
摘要:
离子液体凝胶是以离子液体为分散介质形成的凝胶,作为一种新型的混合材料,离子液体凝胶不仅保持了离子液体原有的性质,而且解决了离子液体外溢的问题,其在形状上较高的可塑性满足了人们对特殊材料的需求,同时拓展了离子液体的应用范围。离子液体凝胶的种类较多,大致可分为物理型和化学型两大类。离子凝胶的结构、特性和应用目前成为胶体与界面科学家研究热点内容之一,也是近年来软物质科学研究中的主要内容。通过综述近年来离子液体凝胶的构筑、凝胶结构和性能与应用研究取得的进展,为未来离子液体凝胶的构筑及应用提供了重要的理论指导。
中图分类号:
1 | JORDON LLOYD D . Colloid Chemistry Vol[M]. New York: The Chemical Catalog Co, 1926: 767. |
2 |
TERECH P , WEISS R G . Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chemical Reviews, 1997, 97 (8): 3133- 3160.
doi: 10.1021/cr9700282 |
3 |
GRAHAM T . Liquid diffusion applied to analysis[J]. Philos Trans R Soc, 1861, 151: 183- 224.
doi: 10.1098/rstl.1861.0011 |
4 |
FLORY P J . Introductory lecture[J]. Faraday Discuss Chem Soc, 1974, 57: 7- 18.
doi: 10.1039/dc9745700007 |
5 |
OKESOLA B O , SMITH D K . Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal[J]. Chemical Society Reviews, 2016, 45 (15): 4226- 4251.
doi: 10.1039/C6CS00124F |
6 |
SANGEETHA N M , MAITRA U . Supramolecular gels: functions and uses[J]. Chemical Society Reviews, 2005, 34 (10): 821- 836.
doi: 10.1039/b417081b |
7 |
SEGARRA-MASET M D , NEBOT V J , MIRAVET J F , et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42 (17): 7086- 7098.
doi: 10.1039/C2CS35436E |
8 | ESCUDER B , MIRAVET J F . Functional Molecular Gels[M]. Cambridge: Royal Society of Chemistry, 2013. |
9 | ESTROFF L A , HAMILTON A D . Water gelation by small organic molecules[J]. Chemical Reviews, 2004, 104 (3): 1201- 1218. |
10 |
MARR P C , MARR A C . Ionic liquid gel materials: applications in green and sustainable chemistry[J]. Green Chemistry, 2016, 18 (1): 105- 128.
doi: 10.1039/C5GC02277K |
11 | LE BIDEAU J , VIAU L , VIOUX A . Ionogels, ionic liquid based hybrid materials[J]. Chemical Society Reviews, 2011, 40 (2): 907- 925. |
12 |
KIMIZUKA N , NAKASHIMA T . Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels[J]. Langmuir, 2001, 17 (22): 6759- 6761.
doi: 10.1021/la015523e |
13 |
ISHIOKA Y , MINAKUCHI N , MIZUHATA M , et al. Supramolecular gelators based on benzenetricarboxamides for ionic liquids[J]. Soft Matter, 2014, 10 (7): 965- 971.
doi: 10.1039/C3SM52363B |
14 |
MINAKUCHI N , HOE K , YAMAKI D , et al. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids[J]. Langmuir, 2012, 28 (25): 9259- 9266.
doi: 10.1021/la301442f |
15 |
ISIK M , GRACIA R , KOLLNUS L C , et al. Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings[J]. ACS Macro Letters, 2013, 2 (11): 975- 979.
doi: 10.1021/mz400451g |
16 |
UEKI T , USUI R , KITAZAWA Y , et al. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly[J]. Macromolecules, 2015, 48 (16): 5928- 5933.
doi: 10.1021/acs.macromol.5b01366 |
17 |
THIEMANN S , SACHNOV S J , PETTERSSON F , et al. Cellulose-based ionogels for paper electronics[J]. Advanced Functional Materials, 2014, 24 (5): 625- 634.
doi: 10.1002/adfm.201302026 |
18 |
LIU X H , WEN Z B , WU D B , et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (30): 11569- 11573.
doi: 10.1039/C4TA01944J |
19 |
TRIVEDI T J , BHATTACHARJYA D , YU J S , et al. Functionalized agarose self-healing ionogels suitable for supercapacitors[J]. Chem Sus Chem, 2015, 8 (19): 3294- 3303.
doi: 10.1002/cssc.201500648 |
20 |
SHIMANO S , ZHOU H S , HONMA I . Preparation of nanohybrid solid-state electrolytes with liquidlike mobilities by solidifying ionic liquids with silica particles[J]. Chemistry of Materials, 2007, 19 (22): 5216- 5221.
doi: 10.1021/cm0707814 |
21 | ZHAO N N , LIU Y L , ZHAO X M , et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale, 2016, 8 (3): 1545- 1554. |
22 |
DUCROS J B , BUCHTOV N , MAGREZ A , et al. Ionic and electronic conductivities in carbon nanotubes-ionogel solid device[J]. J Mater Chem, 2011, 21 (8): 2508- 2511.
doi: 10.1039/C0JM02016H |
23 |
WANG Y , KALYTCHUK S , ZHANG Y , et al. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal of Physical Chemistry Letters, 2014, 5 (8): 1412- 1420.
doi: 10.1021/jz5005335 |
24 |
GUYOMARD-LACK A , ABUSLEME J , SOUDAN P , et al. Hybrid silica-polymer ionogel solid electrolyte with tunable properties[J]. Advanced Energy Materials, 2014, 4 (8): 1301570.
doi: 10.1002/aenm.201301570 |
25 |
SONG H Z , ZHAO N N , QIN W C , et al. High-performance ionic liquid-based nanocomposite polymer electrolytes with anisotropic ionic conductivity prepared by coupling liquid crystal self-templating with unidirectional freezing[J]. Journal of Materials Chemistry A, 2015, 3 (5): 2128- 2134.
doi: 10.1039/C4TA05720A |
26 |
HOROWITZ A I , PANZER M J . Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading[J]. Angewandte Chemie International Edition, 2014, 53 (37): 9780- 9783.
doi: 10.1002/anie.201405691 |
27 |
TAMESUE S , OHTANI M , YAMADA K , et al. Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants[J]. Journal of the American Chemical Society, 2013, 135 (41): 15650- 15655.
doi: 10.1021/ja408547g |
28 |
XIE Z L , HUANG X , TAUBERT A . DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change[J]. Advanced Functional Materials, 2014, 24 (19): 2837- 2843.
doi: 10.1002/adfm.v24.19 |
29 | SINGH V V , NIGAM A K , BATRA A , et al. Applications of ionic liquids in electrochemical sensors and biosensors[J]. International Journal of Electrochemistry, 2012, 2012: 1- 19. |
30 |
CAI M R , LIANG Y M , ZHOU F , et al. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator[J]. Journal of Materials Chemistry, 2011, 21 (35): 13399- 13405.
doi: 10.1039/c1jm12010g |
31 | VISENTIN A F , PANZER M J . Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response[J]. ACS Applied Materials & Interfaces, 2012, 4 (6): 2836- 2839. |
32 |
BUCHTOV N , GUYOMARD-LACK A , LE BIDEAU J . Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes[J]. Green Chem, 2014, 16 (3): 1149- 1152.
doi: 10.1039/C3GC42022A |
33 | CHEN B H , LU J J , YANG C H , et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers[J]. ACS Applied Materials & Interfaces, 2014, 6 (10): 7840- 7845. |
34 |
ZHOU D , ZHOU R , CHEN C X , et al. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. The Journal of Physical Chemistry B, 2013, 117 (25): 7783- 7789.
doi: 10.1021/jp4021678 |
35 | SHEN B S , LANG J W , GUO R S , et al. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7 (45): 25378- 25389. |
36 |
WANG S , HSIA B , CARRARO C , et al. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte[J]. J Mater Chem A, 2014, 2 (21): 7997- 8002.
doi: 10.1039/C4TA00570H |
37 | KIM D , LEE G , KIM D , et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte[J]. ACS Applied Materials & Interfaces, 2015, 7 (8): 4608- 4615. |
38 | LEE J H , LEE A S , LEE J C , et al. Hybrid ionogel electrolytes for high temperature lithium batteries[J]. J Mater Chem A, 2015, 3 (5): 2226- 2233. |
39 |
MOON H C , LODGE T P , FRISBIE C D . Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic[J]. Journal of the American Chemical Society, 2014, 136 (9): 3705- 3712.
doi: 10.1021/ja5002899 |
40 |
YUAN H T , SHIMOTANI H , TSUKAZAKI A , et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids[J]. Advanced Functional Materials, 2009, 19 (7): 1046- 1053.
doi: 10.1002/adfm.v19:7 |
41 |
LEE K H , KANG M S , ZHANG S P , et al. "Cut and stick" rubbery ion gels as high capacitance gate dielectrics[J]. Advanced Materials, 2012, 24 (32): 4457- 4462.
doi: 10.1002/adma.201200950 |
[1] | 徐海丽,龙攀峰. 烷基糖苷与其他类型表面活性剂的相互作用[J]. 山东大学学报(理学版), 2017, 52(1): 9-14. |
[2] | 张达志,冷士良,孙婷婷,王存英. 胶原蛋白在LB膜上的吸附行为研究[J]. J4, 2012, 47(1): 33-38. |
[3] | 赵西丹1,卢艳敏1,杨延钊1,2*. 微乳液萃取镓的研究[J]. J4, 2010, 45(9): 109-112. |
[4] | 郝京诚. 溶液与界面的协同与融合——自组装聚集结构[J]. J4, 2010, 45(1): 1-9. |
|