您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (1): 1-18.doi: 10.6040/j.issn.1671-9352.9.2018

• 高端论坛 •    下一篇

离子液体凝胶

高娟1,王晓琳2,HOFFMANN Heinz3,郝京诚3,*   

  1. 1. 山东药品食品职业学院基础教学部,山东 淄博 255011
    2. 山东农业大学化学与材料科学学院,山东 泰安 271018
    3. 山东大学胶体与界面化学教育部重点实验室,山东 济南 250100
  • 收稿日期:2018-12-22 出版日期:2019-01-20 发布日期:2019-01-23
  • 通讯作者: 郝京诚
  • 作者简介:郝京诚,男,1964年11月生。山东大学教授、博士生导师。国家杰出青年基金获得者、长江学者特聘教授、山东省泰山学者攀登计划专家、山东省智库高端人才社会建设领域首席专家
    长期从事物理化学教学和胶体与界面化学应用基础研究,在表面活性剂物理化学与性能领域有较高的国际影响,研究成果在提高石油采收率和凝胶技术污水重金属离子吸附净化,以及国家基础材料技术的提升和产业化等方面做出贡献
    曾任第21届国际表面活性剂溶液科学大会主席、亚洲胶体与界面科学联合会主席,2017年增选欧洲科学院Member、2018年增选国际胶体与界面科学联合会Member,现任亚洲胶体与界面科学联合会委员、中国化学会理事。担任Langmuir Senior Editor,任《Adv. Colloid Interface Sci.》《J. Colloid Interface Sci.》《Colloids Surf. A》国际和《物理化学学报》《化学进展》国内期刊编委。山东大学物理化学学科和世界一流化学学科学术带头人之一
    主持国家“973”重大研究计划,国家自然科学基金重点、重大国际合作和面上项目18项。在《Chem. Rev.》《Acc. Chem. Res.》《Chem. Soc. Rev.》《Angew. Chem. Int. Ed.》《JACS》《Langmuir》等期刊发表论文400余篇,撰英文专著2部,其中在《Langmuir》论文超过100篇,所发表论文他引10 000余次。获邀各类国际会议Plenary Lecture和Invited Talk报告40余次。曾获中科院百人计划择优资助、国家杰出青年科学基金、长江学者特聘教授、日本材料技术研究会特别奖、亚洲胶体与界面科学联合会特别奖、CCS-BASF青年知识创新奖、教育部自然科学一等奖(排名1)、亚洲化学新星奖、CCS-AkzoNobel化学奖等
  • 基金资助:
    国家自然科学基金重点国际(地区)合作研究资助项目(2140102006)

Ionic liquid gels

Juan GAO1,Xiao-lin WANG2,Heinz HOFFMANN3,Jing-cheng HAO3,*   

  1. 1. Basic Teaching Department, Shandong Drug and Food Vocational College, Zibo 255011, Shandong, China
    2. School of Chemistry and Material Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
    3. Key Laboratory of Colloid and Interface Chemistry, Jinan 250100, Shandong, China
  • Received:2018-12-22 Online:2019-01-20 Published:2019-01-23
  • Contact: Jing-cheng HAO
  • Supported by:
    国家自然科学基金重点国际(地区)合作研究资助项目(2140102006)

摘要:

离子液体凝胶是以离子液体为分散介质形成的凝胶,作为一种新型的混合材料,离子液体凝胶不仅保持了离子液体原有的性质,而且解决了离子液体外溢的问题,其在形状上较高的可塑性满足了人们对特殊材料的需求,同时拓展了离子液体的应用范围。离子液体凝胶的种类较多,大致可分为物理型和化学型两大类。离子凝胶的结构、特性和应用目前成为胶体与界面科学家研究热点内容之一,也是近年来软物质科学研究中的主要内容。通过综述近年来离子液体凝胶的构筑、凝胶结构和性能与应用研究取得的进展,为未来离子液体凝胶的构筑及应用提供了重要的理论指导。

关键词: 表面活性剂, 聚集体, 离子液体凝胶, 响应性

Abstract:

Ionic liquid gels (Ionogels) are the kind of gels formed by using ionic liquids as dispersing media. As new mixed materials, ionogels not only keep the original properties of ionic liquids, but also solve the problems of ionic liquid spillover. The high plasticity in shape meets the needs of special materials and expands the application of ionic liquids. There are many kinds of ionogels, which can be divided into physical and chemical types. Recent years, the structures, properties and applications of ionogels have become one of the hot topics in colloid and interface sciences, as well as the main contents of soft matters. The progress in the construction, structures, properties and applications of ionogels in recent years is reviewed and summarized, which can provide an important theoretical guidance for the construction and applications of ionogels in the future.

Key words: surfactant, aggregate, ionic liquid gel, responsibility

中图分类号: 

  • O648

图1

凝胶的不同分类方式[6]"

图2

凝胶的不同刺激响应性质"

图3

不同聚集模式示意图[6]"

图4

分子凝胶自组装过程示意图[8]"

图5

根据液体分散介质对凝胶进行的分类"

图6

不同类型的离子液体凝胶[11]"

图7

体系所用离子液体及所合成的两亲分子化学结构式[12]"

图8

凝胶因子1-6的分子式[13]"

图9

凝胶因子结构式及其在3种溶剂中形成凝胶的微观结构[14]"

图10

ABA三嵌段共聚物的合成路线图[16]"

图11

离子液体凝胶的构筑[17] (a)用于制备微纤维素离子液体凝胶的离子液体结构式及纤维素重复单元;(b)由微纤维素和离子液体[EMIM][Me(EG)2(Me)PO3]构筑的能够自支撑的离子液体凝胶。"

表1

不同SiO2尺寸和离子液体含量下[BMIM][TFSI]/SiO2混合材料的状态[20]"

IL conc.(wt%)
10 20 30 40 50 60 70 80 90
SiO2 100 μm P G G G L L L L
SiO2 70 nm P P G G G VL VL VL VL
SiO2 14 nm P P P P P G G G G
SiO2 7 nm P P P P P P G G G

图12

离子液体凝胶光学显微镜照片[21] (a)凝胶被剪切前;(b)离子液体凝胶被剪切后内部定向排列结构示意图,其中S代表剪切;(c)离子液体和HNTs通过非共价键相互作用形成的液晶相。"

图13

离子液体凝胶的制备过程[23] (a)利用有机硅烷修饰的碳量子点在离子液体[Carb-Bim]Br中构筑碳量子点-离子液体凝胶;(b)透明且能够自支撑的碳量子点-离子液体凝胶薄片。"

图14

[75/25]/64离子液体凝胶[24] (a)照片; (b) AFM结果; (c)薄膜横截面的SEM结果(箭头代表厚度)。"

图15

基于离子液体纳米复合材料聚合物电解质的制备过程[25]"

图16

20 ℃浸泡过夜得到的凝胶照片及不同凝胶样品的G'和G"数据[27]"

图17

聚二甲基硅氧烷(PDMS)离子液体凝胶及纯离子液体1-乙基-3-甲基咪唑四氰合硼酸盐(EMI TCB)[26]"

图18

离子液体凝胶材料的电化学性能[18] (a)在10 mV·s-1下,柔性器件在不同弯曲角度(0°, 45°, 90°和135°)下的循环伏安曲线; (b)在50 mV·s-1下,柔性全固态超级电容器在不同弯曲循环次数下的循环伏安曲线。"

图19

HNT, BMIMBF4及BMIMBF4/HNT离子液体凝胶的TGA曲线(a)和DTG曲线(b)(加热速率为10 ℃·min-1)[21]"

图20

离子液体凝胶的各类应用[11]"

图21

微型超级电容器的构筑及特性[37] (a)在PET基底上利用图案化的固体电解质构筑柔性MSC的过程;(b)所构筑的柔性MSC实物照片;(c)离子液体[EMIM][TFSI]及聚合物PEGDA分子结构;(d)不同电解质图案光学显微镜照片。"

图22

离子液体凝胶的构筑[38]"

图23

LiFePO4/HI-2/Li电池的电化学性能[38] (a)不同温度及倍率下LiFePO4/HI-2/Li电池的放电容量;(b)在0.1C充电-0.1C放电状态下,LiFePO4/HI-2/Li在不同温度下的放电结果。"

图24

电化学发光器件的制备[39] (a)由发光离子液体凝胶层构筑的ECL器件,凝胶3种组分Ru(bpy)3Cl2/PS-b-PMMA-b-PS/[EMI][TFSI]的质量比为1: 4: 16; (b) ECL器件原始状态照片; (c) ECL器件开启状态照片,当对器件以60 Hz的频率施加3.6 V (-1.8~+1.8 V)的交流峰对峰电压时其发射的红橙光; (d)由含有不同浓度的Ru(bpy)3Cl2(质量分数为0.5%~12.5%)的离子液体凝胶构筑的ECL器件的发射光谱,λmax=610 nm (2.04 eV)处的峰对应于Ru(bpy)32+的激发态; (e)图(d)中610 nm处的峰值随Ru(bpy)3Cl2浓度的变化曲线。"

图25

晶体管的截面示意图及光学照片[41] (a)装有离子液体凝胶的顶注式有机薄膜晶体管(凝胶-OTFT)的截面示意图; (b)凝胶-OTFT光学照片; (c)侧注式晶体管的截面示意图; (d)侧注式凝胶-OTFT光学照片。"

图26

离子液体、离子液体凝胶及凝胶因子的腐蚀测试结果(为了加速腐蚀,缩短测试时间,腐蚀测试是将钢板浸泡在分别含有离子液体、离子液体凝胶及凝胶因子的饱和Ca(OH)2溶液中,室温下45 d)[30]"

图27

凝胶的触变性和摩擦学性能[30] (a)离子液体凝胶的触变行为;(b) 1-己基-3-甲基咪唑六氟磷酸盐([C1C6Im][PF6])及含有不同凝胶因子(质量分数均为5%)的离子液体凝胶的摩擦系数随时间的变化曲线(测试条件:往复摩擦磨损测试仪SRV-IV,外加负载:400 N;冲程:1 mm;频率:25 Hz;历时:30 min;温度:20~80 ℃);(c)真空状态(1.0×10-6 Pa)及不同温度(-50~50 ℃)条件下,质量分数为5 %的凝胶因子2(LMWG2)在离子液体[C1C6Im][PF6]中构筑的离子液体凝胶在施以3 N外力下的摩擦系数随时间的变化曲线(摩擦磨损测试是由钢球在圆柱形钢块上完成,负载:3 N;转速: 300 r/min;历时:60 min);(d)纯离子液体[C1C6Im][PF6]及添加不同质量分数(0.5%和2%)的凝胶因子3(LMWG3)构成的离子液体凝胶的摩擦系数随时间的变化曲线(摩擦磨损测试是由钢球在圆柱形钢块上完成,负载:3 N;转速: 300 r/min;历时:60 min;温度:20 ℃;真空度:3.0×10-4 Pa;历时:150 min;原子通量:7.0×1015cm-2·s-1)。"

1 JORDON LLOYD D . Colloid Chemistry Vol[M]. New York: The Chemical Catalog Co, 1926: 767.
2 TERECH P , WEISS R G . Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chemical Reviews, 1997, 97 (8): 3133- 3160.
doi: 10.1021/cr9700282
3 GRAHAM T . Liquid diffusion applied to analysis[J]. Philos Trans R Soc, 1861, 151: 183- 224.
doi: 10.1098/rstl.1861.0011
4 FLORY P J . Introductory lecture[J]. Faraday Discuss Chem Soc, 1974, 57: 7- 18.
doi: 10.1039/dc9745700007
5 OKESOLA B O , SMITH D K . Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal[J]. Chemical Society Reviews, 2016, 45 (15): 4226- 4251.
doi: 10.1039/C6CS00124F
6 SANGEETHA N M , MAITRA U . Supramolecular gels: functions and uses[J]. Chemical Society Reviews, 2005, 34 (10): 821- 836.
doi: 10.1039/b417081b
7 SEGARRA-MASET M D , NEBOT V J , MIRAVET J F , et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42 (17): 7086- 7098.
doi: 10.1039/C2CS35436E
8 ESCUDER B , MIRAVET J F . Functional Molecular Gels[M]. Cambridge: Royal Society of Chemistry, 2013.
9 ESTROFF L A , HAMILTON A D . Water gelation by small organic molecules[J]. Chemical Reviews, 2004, 104 (3): 1201- 1218.
10 MARR P C , MARR A C . Ionic liquid gel materials: applications in green and sustainable chemistry[J]. Green Chemistry, 2016, 18 (1): 105- 128.
doi: 10.1039/C5GC02277K
11 LE BIDEAU J , VIAU L , VIOUX A . Ionogels, ionic liquid based hybrid materials[J]. Chemical Society Reviews, 2011, 40 (2): 907- 925.
12 KIMIZUKA N , NAKASHIMA T . Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels[J]. Langmuir, 2001, 17 (22): 6759- 6761.
doi: 10.1021/la015523e
13 ISHIOKA Y , MINAKUCHI N , MIZUHATA M , et al. Supramolecular gelators based on benzenetricarboxamides for ionic liquids[J]. Soft Matter, 2014, 10 (7): 965- 971.
doi: 10.1039/C3SM52363B
14 MINAKUCHI N , HOE K , YAMAKI D , et al. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids[J]. Langmuir, 2012, 28 (25): 9259- 9266.
doi: 10.1021/la301442f
15 ISIK M , GRACIA R , KOLLNUS L C , et al. Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings[J]. ACS Macro Letters, 2013, 2 (11): 975- 979.
doi: 10.1021/mz400451g
16 UEKI T , USUI R , KITAZAWA Y , et al. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly[J]. Macromolecules, 2015, 48 (16): 5928- 5933.
doi: 10.1021/acs.macromol.5b01366
17 THIEMANN S , SACHNOV S J , PETTERSSON F , et al. Cellulose-based ionogels for paper electronics[J]. Advanced Functional Materials, 2014, 24 (5): 625- 634.
doi: 10.1002/adfm.201302026
18 LIU X H , WEN Z B , WU D B , et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (30): 11569- 11573.
doi: 10.1039/C4TA01944J
19 TRIVEDI T J , BHATTACHARJYA D , YU J S , et al. Functionalized agarose self-healing ionogels suitable for supercapacitors[J]. Chem Sus Chem, 2015, 8 (19): 3294- 3303.
doi: 10.1002/cssc.201500648
20 SHIMANO S , ZHOU H S , HONMA I . Preparation of nanohybrid solid-state electrolytes with liquidlike mobilities by solidifying ionic liquids with silica particles[J]. Chemistry of Materials, 2007, 19 (22): 5216- 5221.
doi: 10.1021/cm0707814
21 ZHAO N N , LIU Y L , ZHAO X M , et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale, 2016, 8 (3): 1545- 1554.
22 DUCROS J B , BUCHTOV N , MAGREZ A , et al. Ionic and electronic conductivities in carbon nanotubes-ionogel solid device[J]. J Mater Chem, 2011, 21 (8): 2508- 2511.
doi: 10.1039/C0JM02016H
23 WANG Y , KALYTCHUK S , ZHANG Y , et al. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal of Physical Chemistry Letters, 2014, 5 (8): 1412- 1420.
doi: 10.1021/jz5005335
24 GUYOMARD-LACK A , ABUSLEME J , SOUDAN P , et al. Hybrid silica-polymer ionogel solid electrolyte with tunable properties[J]. Advanced Energy Materials, 2014, 4 (8): 1301570.
doi: 10.1002/aenm.201301570
25 SONG H Z , ZHAO N N , QIN W C , et al. High-performance ionic liquid-based nanocomposite polymer electrolytes with anisotropic ionic conductivity prepared by coupling liquid crystal self-templating with unidirectional freezing[J]. Journal of Materials Chemistry A, 2015, 3 (5): 2128- 2134.
doi: 10.1039/C4TA05720A
26 HOROWITZ A I , PANZER M J . Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading[J]. Angewandte Chemie International Edition, 2014, 53 (37): 9780- 9783.
doi: 10.1002/anie.201405691
27 TAMESUE S , OHTANI M , YAMADA K , et al. Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants[J]. Journal of the American Chemical Society, 2013, 135 (41): 15650- 15655.
doi: 10.1021/ja408547g
28 XIE Z L , HUANG X , TAUBERT A . DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change[J]. Advanced Functional Materials, 2014, 24 (19): 2837- 2843.
doi: 10.1002/adfm.v24.19
29 SINGH V V , NIGAM A K , BATRA A , et al. Applications of ionic liquids in electrochemical sensors and biosensors[J]. International Journal of Electrochemistry, 2012, 2012: 1- 19.
30 CAI M R , LIANG Y M , ZHOU F , et al. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator[J]. Journal of Materials Chemistry, 2011, 21 (35): 13399- 13405.
doi: 10.1039/c1jm12010g
31 VISENTIN A F , PANZER M J . Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response[J]. ACS Applied Materials & Interfaces, 2012, 4 (6): 2836- 2839.
32 BUCHTOV N , GUYOMARD-LACK A , LE BIDEAU J . Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes[J]. Green Chem, 2014, 16 (3): 1149- 1152.
doi: 10.1039/C3GC42022A
33 CHEN B H , LU J J , YANG C H , et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers[J]. ACS Applied Materials & Interfaces, 2014, 6 (10): 7840- 7845.
34 ZHOU D , ZHOU R , CHEN C X , et al. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. The Journal of Physical Chemistry B, 2013, 117 (25): 7783- 7789.
doi: 10.1021/jp4021678
35 SHEN B S , LANG J W , GUO R S , et al. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7 (45): 25378- 25389.
36 WANG S , HSIA B , CARRARO C , et al. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte[J]. J Mater Chem A, 2014, 2 (21): 7997- 8002.
doi: 10.1039/C4TA00570H
37 KIM D , LEE G , KIM D , et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte[J]. ACS Applied Materials & Interfaces, 2015, 7 (8): 4608- 4615.
38 LEE J H , LEE A S , LEE J C , et al. Hybrid ionogel electrolytes for high temperature lithium batteries[J]. J Mater Chem A, 2015, 3 (5): 2226- 2233.
39 MOON H C , LODGE T P , FRISBIE C D . Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic[J]. Journal of the American Chemical Society, 2014, 136 (9): 3705- 3712.
doi: 10.1021/ja5002899
40 YUAN H T , SHIMOTANI H , TSUKAZAKI A , et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids[J]. Advanced Functional Materials, 2009, 19 (7): 1046- 1053.
doi: 10.1002/adfm.v19:7
41 LEE K H , KANG M S , ZHANG S P , et al. "Cut and stick" rubbery ion gels as high capacitance gate dielectrics[J]. Advanced Materials, 2012, 24 (32): 4457- 4462.
doi: 10.1002/adma.201200950
[1] 徐海丽,龙攀峰. 烷基糖苷与其他类型表面活性剂的相互作用[J]. 山东大学学报(理学版), 2017, 52(1): 9-14.
[2] 张达志,冷士良,孙婷婷,王存英. 胶原蛋白在LB膜上的吸附行为研究[J]. J4, 2012, 47(1): 33-38.
[3] 赵西丹1,卢艳敏1,杨延钊1,2*. 微乳液萃取镓的研究[J]. J4, 2010, 45(9): 109-112.
[4] 郝京诚. 溶液与界面的协同与融合——自组装聚集结构[J]. J4, 2010, 45(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[4] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[5] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[6] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[7] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[10] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .