《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 1-11.doi: 10.6040/j.issn.1671-9352.0.2018.709
• •
林国广,李卓茜
LIN Guo-guang, LI Zhuo-xi
摘要: 研究一类带有非线性非局部源项和强阻尼项的高阶Kirchhoff方程的初边值问题。对非线性非局部源项、Kirchhoff应力项进行适当地假设。首先利用Galerkin有限元方法和先验估计证明方程整体解的存在性和唯一性;再由先验估计得到有界吸收集,从而获得高阶非线性Kirchhoff方程的整体吸引子族;将方程线性化并证明解半群的Frechet可微性,进一步证明线性化问题体积元的衰减性,最后证明整体吸引子族的Hausdorff维数及Fractal维数是有限的。
中图分类号:
[1] IGOR C. Longtime dynamics of Kirchhoff wave models with strong nonlinear damping[J]. Journal of Differential Equations, 2012, 252(2):1229-1262. [2] YANG Zhijian, DING Pengyan. Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on Rn[J]. Journal of Mathematical Analysis and Applications, 2016, 434(2):1826-1851. [3] NAKAO M, YANG Zhijian. Global attractors for some quasi-linear wave equations with a strong dissipation[J]. Advance Mathematical Science Applications, 2007, 17(1):89-105. [4] GAO Yunlong, SUN Yuting, LIN Guoguang. The global attractors and their Hausdorff and Fractal dimensions estimation for the higher-order nonlinear Kirchhoff-type equation with strong linear damping[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(4):185-202. [5] CHEN Ling, WANG Wei, LIN Guoguang. The global attractors and the Hausdorff and Fractal demensions estimation for the high-order nonlinear Kirchhoff-type equation[J]. Journal of Advances in Mathematics, 2016, 12(9):6608-6621. [6] 林国广.非线性演化方程[M].昆明:云南大学出版社,2011: 123-184. LIN Guoguang. Nonlinear evolution equation[M]. Kunming: Yunnan University Press, 2011: 123-184. [7] ZHOU Shengfan. Dimension of the global attractor for strongly damped nonlinear wave equations[J]. Journal of Mathematical Analysis and Applications,1999,233(1):102-115. [8] 杨志坚,程建玲. Kirchhoff型方程解的渐近行为[J].数学物理学报,2011,31(4):1008-1021. YANG Zhijian, CHEN Jianling. Asymptotic behavior of solutions for Kirchhoff equations[J]. Journal of Mathematical Physics, 2011, 31(4):1008-1021. [9] LIN Guoguang, YANG Sanmei. Hausdorff dimension and Fractal dimension of the global attractor for the higher-order coupled Kirchhoff-type equations[J]. Journal of Applied Mathematics and Physics, 2017, 5(12):2411-2424. [10] YANG Zhijian, DING Pengyan, LI Lei. Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2016, 442(2):485-510. [11] LYU Penghui, LU Jinxing, LIN Guoguang. Global attractor for a class of nonlinear generalized Kirchhoff models[J]. Journal of Advances in Mathematics, 2016, 12(8):6452-6462. [12] LYU Penghui, LOU Ruijin, LIN Guoguang. Global attractor for a class of nonlinear generalized Kirchhoff-Boussinesq model[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(1):82-92. [13] SUN Yuting, GAO Yunlong, LIN Guoguang. The global attractors for the higher-order Kirchhoff-type equation with nonlinear strongly damped term[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(4):203-217. |
[1] | 彭涛涛,刘卫斌. 元胞自动机中的Besicovitch-Eggleston型集合[J]. 山东大学学报(理学版), 2016, 51(4): 53-58. |
|