您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (5): 21-27.doi: 10.6040/j.issn.1671-9352.2.2018.153

•   • 上一篇    下一篇

一种SDN控制节点故障恢复的部署策略

刘振鹏1,3(),王文胜1,贺玉鹏2,孙静薇1,张彬3,*()   

  1. 1. 河北大学电子信息工程学院, 河北 保定 071002
    2. 河北大学网络空间安全与计算机学院,河北 保定 071002
    3. 河北大学信息技术中心, 河北 保定 071002
  • 收稿日期:2018-09-20 出版日期:2019-05-20 发布日期:2019-05-09
  • 通讯作者: 张彬 E-mail:lzp@hbu.edu.cn;zb@hbu.edu.cn
  • 作者简介:刘振鹏(1966—),男,博士,教授,硕士生导师,研究方向为网络信息安全、隐私保护、软件定义网络等. E-mail:lzp@hbu.edu.cn
  • 基金资助:
    河北省创新能力提升计划项目(179676278D);河北省创新能力提升计划项目(17455309D);教育部云数融合科教创新基金资助项目(2017A20004)

A deployment strategy for fault recovery of SDN control nodes

Zhen-peng LIU1,3(),Wen-sheng WANG1,Yu-peng HE2,Jing-wei SUN1,Bin ZHANG3,*()   

  1. 1. School of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China
    2. School of Cyber Security and Computer, Hebei University, Baoding 071002, Hebei, China
    3. Center for Information Technology, Hebei University, Baoding 071002, Hebei, China
  • Received:2018-09-20 Online:2019-05-20 Published:2019-05-09
  • Contact: Bin ZHANG E-mail:lzp@hbu.edu.cn;zb@hbu.edu.cn
  • Supported by:
    河北省创新能力提升计划项目(179676278D);河北省创新能力提升计划项目(17455309D);教育部云数融合科教创新基金资助项目(2017A20004)

摘要:

针对广域网中软件定义网络(software defined network, SDN)在运行过程中控制器发生不可恢复的故障的情况,提出一种考虑控制器节点故障的部署方法。首先将网络划分成多个子网络,进而提出采用改进的粒子群优化算法对SDN控制器进行部署,以达到较高的可靠性和较低的时间延迟以及负载较为均衡的目的;在网络运行的过程中,当控制器发生不可恢复的故障时,采用熵权多目标决策法确定由发生故障区域的目标slave控制器,将其升级为master控制器,从而保证网络的正常运行。实验结果表明,相对于采取K-means或贪心算法,使用本方法进行控制器部署,在SDN网络的负载均衡率、链路时间延迟等网络关键指标方面均有所提升,且能以较低的代价降低控制器故障节点对网络正常运行的影响。

关键词: 软件定义网络, 粒子群优化, 熵权多目标决策, 广域网, 控制器部署, 控制节点故障, 网络恢复

Abstract:

Aiming at the situation that the controller has an unrecoverable fault during the operation of the software defined network (SDN) in the WAN, a deployment method considering the fault of the controller node is proposed. Firstly, the network is divided into multiple sub-networks, and then an improved particle swarm optimization algorithm is proposed to deploy the SDN controller in order to achieve higher reliability, lower delay and more balanced load. In the process of network operation, when the controller has an unrecoverable fault, the entropy weight multi-objective decision method is used to determine the target slave controller in the faulty area and upgrade it to the master controller to ensure the normal operation of the network. The experimental results show that compared with the K-means or greedy algorithm, the controller deployment using this method improves the network key indicators such as load balancing rate and link delay of the SDN network, and can reduce decrease the impact of controller failure points on the normal operation of the network at a relatively low costs.

Key words: software defined network, particle swarm optimization, entropy weight multi-objective decision making, wide area network, switch dynamic migration, control node failure, network recovery

中图分类号: 

  • TP393

图1

SDN网络的架构"

表1

方案分析评价表"

因素方案1方案2方案n
交换机到控制器的平均时间延迟的倒数b11b12b1n
控制器的剩余处理能力b21b22b2n
负载均衡率b31b32b3n

表2

各因素的熵权值"

因素交换机到控制器平均时间延迟的倒数控制器剩余处理能力负载均衡率
熵(Hi)H1H2H3

图2

不同策略、状况的链路延迟对比"

图3

不同方法不同情况下负载均衡率的对比"

1 张朝昆, 崔勇, 唐翯祎, 等. 软件定义网络(SDN)研究进展[J]. 软件学报, 2015, 26 (1): 62- 81.
ZHANG Chaokun , CUI Yong , TANG Heyi , et al. State-of-the-art survey on software-defined networking (SDN)[J]. Journal of Software, 2015, 26 (1): 62- 81.
2 王丽霞, 曲桦, 赵季红, 等. 软件定义网络中应用二值粒子群优化的控制器部署策略[J]. 西安交通大学学报, 2015, 49 (6): 67- 71.
WANG Lixia , QU Ye , ZHAO Jihong , et al. A strategy of controller placement in software defined networks using binary particle swarm optimization[J]. Journal of Xi'an Jiaotong University, 2015, 49 (6): 67- 71.
3 伊鹏, 刘邦舟, 王文博, 等. 一种考虑软件定义网络控制节点故障的控制器部署和交换机迁移方法[J]. 电子与信息学报, 2017, 39 (8): 1972- 1978.
YI Peng , LIU Bangzhou , WANG Wenbo , et al. Controller placement and switch immigration strategy for SDN controller failure[J]. Journal of Electronics & Information Technology, 2017, 39 (8): 1972- 1978.
4 KUANG H, QIU Y, LI R, et al. A hierarchical K-means algorithm for controller placement in SDN-based WAN architecture[C]// International Conference on Measuring Technology and Mechatronics Automation. New York: IEEE, 2018: 263-267.
5 胡涛, 张建辉, 孔维功, 等. SDN中基于双向匹配的多控制器动态部署算法[J]. 通信学报, 2018, 39 (1): 159- 169.
HU Tao , ZHANG Jianhui , KONG Weigong , et al. Dynamic deployment algorithm for multi-controllers based on bidirectional matching in software defined networking[J]. Journal of Communications, 2018, 39 (1): 159- 169.
6 XIAO Peng, QU Wenyu, QI Heng, et al. The SDN controller placement problem for WAN[C]// IEEE/CIC International Conference on Communications in China. New York: IEEE, 2015: 220-224.
7 陆悠, 奚雪峰, 吴宏杰, 等. 基于拓扑划分的SDN多控制器部署方法[J]. 计算机应用研究, 2017, (11): 3388- 3393.
doi: 10.3969/j.issn.1001-3695.2017.11.041
LU You , XI Xuefeng , WU Hongjie , et al. Multi-controller deployment mechanism for SDN based on topology partitioning[J]. Application Research of Computers, 2017, (11): 3388- 3393.
doi: 10.3969/j.issn.1001-3695.2017.11.041
8 刘邦舟, 汪斌强, 王文博, 等. 针对大规模软件定义网络的子域划分及控制器部署方法[J]. 计算机应用, 2016, 36 (12): 3239- 3243.
doi: 10.11772/j.issn.1001-9081.2016.12.3239
LIU Bangzhou , WANG Binqiang , WANG Wenbo , et al. Domain partition and controller placement for large scale software defined network[J]. Journal of Computer Applications, 2016, 36 (12): 3239- 3243.
doi: 10.11772/j.issn.1001-9081.2016.12.3239
9 YAO Guang , BI Jun , LI Yuliang , et al. On the capacitated controller placement problem in software defined networks[J]. IEEE Communications Letters, 2014, 18 (8): 1339- 1342.
doi: 10.1109/LCOMM.2014.2332341
10 ZHAO Zhipeng , WU Bin . Scalable SDN architecture with distributed placement of controllers for WAN[J]. Concurrency & Computation Practice & Experience, 2017, 29 (16)
11 史久根, 邾伟, 贾坤荥, 等. 软件定义网络中基于负载均衡的多控制器部署算法[J]. 电子与信息学报, 2018, 40 (2): 455- 461.
SHI Jiugen , ZHU Wei , JIA Kunying , et al. Multi-controller deployment algorithm based on load balance in software defined network[J]. Journal of Electronics & Information Technology, 2018, 40 (2): 455- 461.
12 SHI Yuhui, EBERHART C R. Parameter selection in particle swarm optimization[C]//International Conference on Evolutionary Programming. Berlin: Springer, 1998: 591-600.
13 刘智, 端木京顺, 王强, 等. 基于熵权多目标决策的方案评估方法研究[J]. 数学的实践与认识, 2005, 35 (10): 114- 119.
doi: 10.3969/j.issn.1000-0984.2005.10.020
LIU Zhi , DUANMU Jingshun , WANG Qiang , et al. An evaluation method of scheme based on entropy weight multi-objection decision-making[J]. Mathematics in Practice and Theory, 2005, 35 (10): 114- 119.
doi: 10.3969/j.issn.1000-0984.2005.10.020
[1] 谭韧,殷肖川,焦贤龙,廉哲,陈玉鑫. 一种软件定义APT攻击移动目标防御网络架构[J]. 山东大学学报(理学版), 2018, 53(1): 38-45.
[2] 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28.
[3] 曲滨鹏, 王智昊. 基于粒子群优化的适应Memetic算法分析[J]. 山东大学学报(理学版), 2014, 49(08): 118-124.
[4] 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16.
[5] 丁卫平1,2,3,王建东2,段卫华2,施佺1. 一种求解属性约简优化的协同粒子群算法[J]. J4, 2011, 46(5): 97-102.
[6] 裴胜玉,周永权*. 一种基于混沌变异的多目标粒子群优化算法[J]. J4, 2010, 45(7): 18-23.
[7] 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51.
[8] . 微生物批式流加发酵的建模及基于HPSO算法的参数辨识[J]. J4, 2009, 44(7): 71-78.
[9] 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78.
[10] 张国英,沙 芸,江慧娜 . 基于粒子群优化的快速KNN分类算法[J]. J4, 2006, 41(3): 34-36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[3] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[4] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[5] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[6] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[7] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[8] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[9] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[10] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .