《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 2-7.doi: 10.6040/j.issn.1671-9352.0.2019.172
• •
刘祖华1,2,郭聿琦1*
LIU Zu-hua1,2, GUO Yu-qi1*
摘要: 综合了文献[1]与郭聿琦(1)等的另一篇文章中的几个事实, 得到了命题1:若L1L∈Df(Dt, Dr),则L∈Df(Dt, Dr),其中L1, L为字母表A上语言且L1有限。关于命题1中的Dr情形,给出了一个新的简单证明。还证明了:关于D和Di, 命题1也成立。进一步将命题1中L1从“有限的”改扩成“稀疏的”后,关于D,Df和Dt命题仍然成立;又用例子指出关于Di和Dr命题并不成立。
中图分类号:
[1] ZHANG D, GUO Y Q, SHUM K P. On some decompositions of r-disjunctive languages[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2014, 37(3):727-746. [2] GUO Y Q, REIS C M, THIERRIN G. Relatively f-disjunctive languages[J]. Semigroup Forum, 1988, 37:289-299. [3] LIU Y, SHUM K P, GUO Y Q. Relatively regular languages and thin codes[J]. European Journal of Combinatorics, 2008, 29:261-267. [4] GUO Y Q, SHYR H J, THIERRIN G. F-disjunctive languages[J]. International Journal of Computer Mathematics, 1986, 18:219-237. [5] ITO M. Dense and disjunctive properties of languages[C] // Fundamentals of Computation Theory, International Symposium, Fct '93. Szeged: Springer, 1993: 31-49. [6] REIS C M. A note on F-disjunctive languages[J]. Semigroup Forum, 1987, 36:159-165. [7] REIS C M. F-disjunctive congruences and a generalization of monoids with length[J]. Semigroup Forum, 1990, 41:291-306. [8] SHYR H J, THIERRIN G. Disjunctive Languages and codes, fundamentals of computation theory[C] // Proceeding of the 1977 Inter FCT-Conference, Lecture Notes in Computer Science, No 56. Poznan: Springer-Verlag, 1977: 171-176. [9] ZHANG D, GUO Y Q, SHUM K P. Some results in r-disjunctive languages and related topics[J]. Soft Computing, 2017, 21(10):2477-2483. [10] HOWIE J M. Automata and languages[M]. Oxford: Clarendon Press, 1991. [11] BERSTEL J, PERRIN D. Theory of codes[M]. Orlando: Academic Press, 1985. |
[1] | 宋贤梅,熊蕾. Z2a+uZ2a 上线性码的MacWilliams恒等式及自对偶码[J]. 山东大学学报(理学版), 2016, 51(2): 72-78. |
[2] | 刘修生,刘花璐. 环Fp+vFp上线性码的MacWilliams恒等式[J]. J4, 2013, 48(12): 61-65. |
|