《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 53-58.doi: 10.6040/j.issn.1671-9352.0.2018.300
• • 上一篇
王维忠,周琨强
WANG Wei-zhong, ZHOU Kun-qiang
摘要: 主要建立了新的概念——混合图M的埃尔米特-关联能量HIE(M)=∑ni=1(qi)1/2(qi是M的埃尔米特-拟拉普拉斯矩阵的第i个特征值),利用M的顶点数、边数及最大度,给出了M的埃尔米特-关联能量的界。
中图分类号:
[1] LIU Jianxi, LI Xueliang. Hermitian-adjacency matrices and Hermitian energies of mixed graphs[J]. Linear Algebra and Its Applications, 2015, 466:182-207. [2] YU Guihai, QU Hui. Hermitian Laplacian matrix and positive of mixed graphs[J]. Applied Mathematics and Computation, 2015, 269:70-76. [3] YU Guihai, LIU Xin, QU Hui. Singularity of Hermitian(quasi-)Laplacian matrix of mixed graphs[J]. Applied Mathematics and Computation, 2017, 293:287-292. [4] JOOYANDEH M R, KIANI D, MIRZAKHAH M. Incidence energy of a graph[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2009, 62(3):561-572. [5] WANG Weizhong, YANG Dong. Bounds for incidence energy of some graphs[J]. Journal of Applied Mathematics, 2013, 2013:1-7. http://dx.doi.org/10.1155/2013/757542. [6] WANG Weizhong, LUO Yanfeng, GAO Xing. On incidence energy of some graphs[J]. Ars Combinatoria, 2014, 114:427-436. [7] GUTMAN I, KIANI D, MIRZAKHAH M. On incidence energy of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2009, 62(3):573-580. [8] GUTMAN I, KIANI D, MIRZAKHAH M, et al. On incidence energy of a graph[J]. Linear Algebra and Its Applications, 2009, 431(8):1223-1233. [9] ZHOU Bo. More upper bounds for the incidence energy[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2010, 64(1):123-128. [10] ZHANG Jianbin, LI Jianping. New results on the incidence energy of graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2012, 68(3):777-803. [11] ROJO O, LENES E. A sharp upper bound on the incidence energy of graphs in terms of connectivity[J]. Linear Algebra and Its Applications, 2013, 438(3):1485-1493. [12] DAS K C, GUTMAN I. On incidence energy of graphs[J]. Linear Algebra and Its Applications, 2014, 446:329-344. [13] MADEN A D. New bounds on the incidence energy, randic energy and randic estrada index[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2015, 74(2):367-387. [14] ZHANG Xiaodong, LI Jiongsheng. The Laplacian spectrum of a mixed graph[J]. Linear Algebra and Its Applications, 2002, 353(1/2/3):11-20. [15] BAPAT R B. Graph and matrices[M]. London: Springer, 2010. [16] HORN R A, JOHNSON C R. Matrix analysis[M]. 2 eds. New York: Cambridge University Press, 2012. [17] GUTMAN I, TRINAJSTIC N. Graph theory and molecular orbitals: total π-electron energy of alternant hydrocarbons[J]. Chemical Physics Letters, 1972, 17(4):535-538. |
[1] | 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30. |
[2] | 张友,黄丽娜,李沐春. 一类六角系统的点可区别边染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 41-47. |
[3] | 刘佳,孙磊. 不含4-圈或弦6-圈的平面图是(3,0,0)-可染的[J]. 《山东大学学报(理学版)》, 2018, 53(12): 31-40. |
[4] | 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17-22. |
[5] | 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34. |
[6] | 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65. |
[7] | 寇艳芳,陈祥恩,王治文. K1,3,p和 K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60. |
[8] | 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41. |
[9] | 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30. |
[10] | 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74. |
[11] | 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106. |
[12] | 王晔,孙磊. 不含3圈和4圈的1-平面图是5-可染的[J]. 山东大学学报(理学版), 2017, 52(4): 34-39. |
[13] | 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33. |
[14] | 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104. |
[15] | 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36. |
|