您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 109-117.doi: 10.6040/j.issn.1671-9352.0.2019.669

• • 上一篇    

局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用

温晓1,刘琪2*,高振2,曾维新2,吕咸青1   

  1. 1.中国海洋大学物理海洋教育部重点实验室, 山东 青岛 266100;2.中国海洋大学数学科学学院, 山东 青岛 266100
  • 发布日期:2020-02-14
  • 作者简介:温晓(1992— ),女,博士研究生,研究方向为偏微分方程数值解. E-mail:wenxiao_ouc@163.com*通信作者简介:刘琪(1994— ),女,硕士研究生,研究方向为偏微分方程数值解. E-mail:lq1697@stu.ouc.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871443);山东省自然科学基金资助项目(ZR2017MA016);中国海洋大学科研启动经费资助项目(201712011)

Application of local non-intrusive reduced basis method in Rayleigh-Taylor instability

WEN Xiao1, LIU Qi2*, GAO Zhen2, DON Wai-sun2, LYU Xian-qing1   

  1. 1. Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, Shandong, China;
    2. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, Shandong, China
  • Published:2020-02-14

摘要: 局部的非侵入式约化基模型用于模拟瑞利-泰勒不稳定性(Rayleigh-Taylor instability, RTI)随时间演化的过程,其中初始小扰动的振幅和时间可视为自由参数。约化基模型把解看作一组基函数的线性组合,其中,基函数由本征正交分解获得,人工神经网络用于建立参数与基函数系数之间的映射关系。由于RTI随着时间的增加,相应的结构越来越复杂,尤其是后期会产生小规模旋涡的卷曲结构,因此考虑将RTI分为早期发展(线性)和中后期(拟非线性和弱非线性体制)发展阶段,即分段考虑时间参数。将时间参数分为3、5、6段,局部的非侵入式约化基模型与全局的非侵入式约化基模型相比,在精度相似的情况下,计算时间最快可以提高4倍左右。

关键词: 瑞利-泰勒不稳定性, 局部非侵入式约化基模型, 人工神经网络

Abstract: A local non-intrusive reduced basis method(RBM)is proposed to simulate the evolution of Rayleigh-Taylor instability(RTI), in which the amplitude and time of initial small perturbations are considered as free parameters. RBM regards the solution as a linear combination of a set of reduced basis functions, which can be obtained by the proper orthogonal decomposition. Furthermore, the artificial neural network is used to establish the mapping relationship between the parameters and the coefficients of the reduced basis functions. Due to the structures of RTI becoming more and more complex with the increasing time, especially the rollup structures of small-scale vortices in the late stage, RTI is considered being divided into the early stage(linear)and the middle and late stage(quasi-non-linear and weak non-linear systems), i.e. time parameter is considered in stages. The time parameter is divided into three, five and six segments and the local RBM allows a potential speedup up to a factor of about four times faster than the global RBM with similar accuracy.

Key words: Rayleigh-Taylor instability, local non-intrusive reduced basis method, artificial neural network

中图分类号: 

  • O242
[1] RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, 14(1):170-177.
[2] TAYLOR G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes(I)[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1065):192-196.
[3] NITTMANN J, FALLE S A E G, GASKELL P H. The dynamical destruction of shocked gas clouds[J]. Monthly Notices of the Royal Astronomical Society, 1982, 201(4):833-847.
[4] ISOBE H, MIYAGOSHI T, SHIBATA K, et al. Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability[J]. Nature, 2005, 434(7032):478-481.
[5] YE W H, ZHANG W Y, CHEN G N, et al. Numerical simulations of the FCT method on Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Chinese Journal of Physics, 1998, 15(3):278-282.
[6] LI X L, JIN B X, GLIMM J. Numerical study for the three dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation[J]. Journal of Computational Physics, 1996, 126(2):343-355.
[7] TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A Front-Tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2):708-759.
[8] TARTAKOVSKY A M, MEAKIN P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability[J]. Journal of Computational Physics, 2005, 207(2):610-624.
[9] DUCHEMIN L, JOSSERAND C, CLAVIN P, et al. Asymptotic behavior of the Rayleigh-Taylor instability[J]. Physical Review Letters, 2005, 94(22): 224501.
[10] COOK A W, DIMOTAKIS P E. Transition stages of Rayleigh-Taylor instability between miscible fluids[J]. Journal of Fluid Mechanics, 2001, 443:69-99.
[11] ZHANG J, WANG L F, YE W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries[J]. Physics of Plasmas, 2018, 25(2):022701.
[12] ZHANG J, WANG L F, YE W H, et al. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 2017, 24(6):062703.
[13] ZHANG J, WANG L F, YE W H, et al. Weakly nonlinear multi-mode Rayleigh-Taylor instability in two-dimensional spherical geometry[J]. Physics of Plasmas, 2018, 25(8):082713.
[14] ZHAO K G, XUE C, WANG L F, et al. Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 2019, 26(2):022710.
[15] ITO K, RAVINDRAN S S. A reduced-order method for simulation and control of fluid flows[J]. Journal of Computational Physics, 1998, 143(2):403-425.
[16] BUI T T, WILLCOX K, GHATTAS O. Model reduction for large-scale systems with high-dimensional parametric input space[J]. SIAM Journal on Scientific Computing, 2008, 30(6):3270-3288.
[17] HESTHAVEN J S, UBBIALI S. Non-intrusive reduced order modeling of nonlinear problems using neural networks[J]. Journal of Computational Physics, 2018, 363:55-78.
[18] AUDOUZE C, VUYST F D, NAIR P B. Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis[J]. International Journal for Numerical Methods in Engineering, 2009, 80(8):1025-1057.
[19] HESTHAVEN J S, ROZZA G, STAMM B. Certified reduced basis methods for parametrized partial differential equations[M]. Cham, Switzerland: Springer International Publishing, 2016.
[20] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211.
[21] BULJAK V. Inverse analyses with model reduction: proper orthogonal decomposition and radial basis functions for fast simulations[M]. Berlin: Springer, 2012: 85-139.
[22] KOHONEN T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1):3-16.
[23] 刘冰,郭海霞. MATLAB神经网络超级学习手册[M]. 北京:人民邮电出版社,2014: 156-168. LIU Bing, GUO Haixia. Neural network super learning manual based on MATLAB[M]. Beijing: Posts and Telecom Press, 2014: 159-168.
[24] CENATE C F, RANI B S, RAMADEVI R, et al. Optimization of the cascade feed forward back propagation network for defect classification in ultrasonic images[J]. Russian Journal of Nondestructive Testing, 2016, 52(10):557-568.
[25] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5):1766-1792.
[1] 堵锡华,史小琴,冯长君,李亮. 基于野韭菜挥发性成分的色谱保留指数神经网络预测[J]. 山东大学学报(理学版), 2014, 49(1): 50-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!