您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (5): 95-104.doi: 10.6040/j.issn.1671-9352.2.2019.144

• • 上一篇    

电动汽车充电桩CAN总线协议的安全检测

徐江珮,王晋,刘畅,周亮,龙凤   

  1. 国网湖北省电力有限公司电力科学研究院, 湖北 武汉 430077
  • 发布日期:2020-05-06
  • 作者简介:徐江珮(1990— ),女,硕士研究生,工程师,研究方向为电力系统信息通信安全. E-mail: hbxjp9@outlook.com

Security detection of CAN bus protocol for electric vehicle and charging pile

XU Jiang-pei, WANG Jin, LIU Chang, ZHOU Liang, LONG Feng   

  1. State Grid Hubei Electric Power Research Institute, Wuhan 430077, Hubei, China
  • Published:2020-05-06

摘要: 随着智能充电桩的广泛部署,电动汽车充电桩的信息安全问题日益严重。攻击者可以通过外部访问接口渗透到连接关键控制单元的充电桩CAN总线,通过CAN总线发送恶意攻击报文,干扰充电桩工作,严重危害充电基础设施安全。针对电动汽车充电桩CAN总线信息安全问题,提出了一种基于最大最小蚁群算法(MMAS)的CAN总线模糊测试方法。该方法通过改进最大最小蚁群算法来提高CAN协议模糊测试报文生成的效率,利用特定的变异策略,更改报文相应字段,通过CAN协议分析仪向充电桩CAN节点发送模糊测试报文,使充电桩CAN协议的检测效率大幅提高。基于上述测试方法,发现利用目前充电协议安全脆弱性对充电桩进行攻击,可导致充电桩产生停机、拒绝服务等安全问题。

关键词: CAN总线, 充电桩, 信息安全, 异常检测, 模糊测试, 最大最小蚁群算法

Abstract: With the extensive deployment of intelligent charging piles, the related information security issues are gradually becoming serious. Through the external access interface, an attacker can penetrate to the CAN bus network which connects to the key control unit of charging pile. By sending malicious attack messages, an attacker can interfere with charging pile operating and seriously endanger the safety of charging infrastructure. In order to solve the problem of CAN bus information security of electric vehicle charging pile, a fuzzing test method of CAN bus based on maximum and minimum ant colony algorithm(MMAS)is proposed. This method improves the fuzzing test efficiency of CAN protocol by improving the maximum and minimum ant colony algorithm. It uses a specific mutation strategy to change the corresponding fields of the message packet,sending the fuzzing test message to CAN node of the charging pile through the CAN protocol analyzer. Based on the above testing method, it is found that the attack on charging piles by utilizing the current security vulnerabilities of charging protocol can lead to shutdown, denial of service and other security problems of charging piles.

Key words: CAN bus, charging pile, information security, anomaly detection, fuzzing test, maximum and minimum ant colony algorithm

中图分类号: 

  • TP39
[1] 刘振峰. 电动汽车充电桩安全风险评估方法设计研究[D]. 天津: 天津大学, 2017. LIU Zhenfeng. Design and research the method of safety risk assessment for electric vehicle charging pile[D]. Tianjin: Tianjin University, 2017.
[2] 葛艳华. 大力有序推进充电基础设施建设-国务院办公厅印发《关于加快电动汽车充电基础设施建设的指导意见》[J]. 中国电业(发电版), 2015(11):6-6. GE Yanhua. Vigorously and orderly promote the construction of charging infrastructure-The General Office of the State Council issued the guidance on accelerating the construction of charging infrastructure for electric vehicles[J]. China Electricity Industry(Power Generation Edition), 2015(11):6-6.
[3] 钱进. 国务院发布《加快电动汽车充电基础设施建设的指导意见》[J]. 工程建设标准化, 2015(10):39-39. QIAN Jin. The State Council issued guidance on accelerating the construction of electric vehicle charging infrastructure[J]. Standardization of Engineering Construction, 2015(10):39-39.
[4] 邬宽明. CAN总线原理和应用系统设计[M]. 北京:北京航空航天大学出版社, 1996. WU Kuanming. CAN bus principle and application system design[M]. Beijing: Beihang University Press, 1996.
[5] MILLER C, VALASEK C. Adventures in automotive networks and control units[J]. Def Con, 2013, 21:260-264.
[6] NISHIMURA R, KURACHI R, ITO K, et al. Implementation of the CAN-FD protocol in the fuzzing toolbeSTORM[C] // 2016 IEEE International Conference on Vehicular Electronics and Safety(ICVES), July 10-12, 2016. Beijing, China: IEEE, 2016.
[7] DAVIS R I, NAVET N. Controller area network(CAN)schedulability analysis for messages with arbitrary deadlines in FIFO and work-conserving queues[J]. Real-time Systems, 2007, 35(3):239-272.
[8] GREENBERG A. Hackers remotely kill a jeep on the highway—with me in it[J]. Wired, 2015(7):21.
[9] NOURELDEEN P, AZER M A, REFAAT A, et al. Replay attack on lightweight CAN authentication protocol[C] // 2017 12th International Conference on Computer Engineering and Systems(ICCES), December 19-20, 2017. Cairo: IEEE, 2017: 600-606.
[10] 于赫, 秦贵和, 孙铭会, 等. 车载CAN总线网络安全问题及异常检测方法[J]. 吉林大学学报(工学版), 2016, 46(4):1246-1253. YU He, QIN Guihe, SUN Minghui, et al. Cyber security and anomaly detection method for in-vehicle CAN[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4):1246-1253.
[11] 吴玲云, 秦贵和, 于赫. 基于随机森林的车载CAN总线异常检测方法[J]. 吉林大学学报(理学版), 2018, 56(3):663-668. WU Lingyun, QIN Guihe, YU He. Anomaly detection method for in-vehicle CAN bus based on random forest[J]. Journal of Jilin University(Science Edition), 2018, 56(3):663-668.
[12] ZHANG Y, CHEN M, GUIZANI N, et al. SOVCAN: safety-oriented vehicular controller area network[J]. IEEE Communications Magazine, 2017, 55(8):94-99.
[13] WAGNER M, SCHILDT S, POEHNL M. Service-oriented communication for controller area networks[C] // 2016 IEEE 84th Vehicular Technology Conference(VTC-Fall), September 18-21, 2016. Montreal, QC, Canada: IEEE, 2016.
[14] SUTTON M, GREENE A, AMINI P. Fuzzing: brute force vulnerability discovery[M]. [S.l.] : Pearson Education, 2007.
[15] 段海滨, 王道波, 朱家强, 等. 蚁群算法理论及应用研究的进展[J]. 控制与决策, 2004, 19(12):1321-1326, 1340. DUAN Haibin, WANG Daobo, ZHU Jiaqiang, et al. Development on ant colony algorithm theory and its application[J]. Control and Decision, 2004, 19(12):1321-1326, 1340.
[16] DORIGO M, BLUM C. Ant colony optimization theory: a survey[J]. Theoretical Computer Science, 2005, 344(2/3):243-278.
[17] 孙骞, 张进, 王宇翔. 蚁群算法优化策略综述[J]. 信息安全与技术, 2014, 5(2):22-23, 27. SUN Qian, ZHANG Jin, WANG Yuxiang. Ant colony algorithm optimization strategy review[J]. Information Security and Technology, 2014, 5(2):22-23, 27.
[18] DORIGO M, BIRATTARI M. Ant colony optimization[M]. [S.l.] : Springer, 2010.
[1] 李妮,关焕梅,杨飘,董文永. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 102-109.
[2] 张晶,陈诚,郑焕科. 面向软件漏洞检测的Fuzzing样本优化方法[J]. 《山东大学学报(理学版)》, 2019, 54(9): 1-8, 35.
[3] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1-11.
[4] 丁义涛,杨海滨,杨晓元,周潭平. 一种同态密文域可逆隐藏方案[J]. 山东大学学报(理学版), 2017, 52(7): 104-110.
[5] 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23.
[6] 庄政茂,陈兴蜀,邵国林,叶晓鸣. 一种时间相关性的异常流量检测模型[J]. 山东大学学报(理学版), 2017, 52(3): 68-73.
[7] 吴志军,沈丹丹. 基于信息综合集成共享的下一代网络化全球航班追踪体系结构及关键技术[J]. 山东大学学报(理学版), 2016, 51(11): 1-6.
[8] 张晶, 薛冷, 崔毅, 容会, 王剑平. 基于无线传感器网络的双混沌数据加密算法建模与评价[J]. 山东大学学报(理学版), 2015, 50(03): 1-5.
[9] 康海燕, 杨孔雨, 陈建明. 于K-匿名的个性化隐私保护方法研究[J]. 山东大学学报(理学版), 2014, 49(09): 142-149.
[10] 杜晓军,林柏钢,林志远,李应. 安全软件模糊测试中多种群遗传算法的研究[J]. J4, 2013, 48(7): 79-84.
[11] 郭晨1,梁家荣2,罗超3,彭硕1. 基于TLR异常检测系统的DC算法研究[J]. J4, 2012, 47(5): 93-97.
[12] 黄景文. 信息安全风险因素分析的模糊群决策方法研究[J]. J4, 2012, 47(11): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!