《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 72-78.doi: 10.6040/j.issn.1671-9352.9.2021.002
• • 上一篇
解士杰1, 2*,高腾1,杜梦昭1,刘璇1
XIE Shi-jie1, 2*, GAO Teng1, DU Meng-zhao1, LIU Xuan1
摘要: 目前多种有机手性分子器件虽已研制成功,但其内在的物理机理仍有许多未解之谜,其中手性分子的圆二色性精细结构、手性诱导的自旋选择效应等是有机手性分子研究的核心。为设计基于手性的新型有机功能器件提供理论指导,考虑有机手性分子螺旋势场诱导的自旋-轨道耦合,围绕分子的光电特性及其调控展开了系列研究。根据光致跃迁理论,得到手性分子的光吸收谱和圆二色谱,发现光吸收峰发生劈裂,圆二色谱由轨道磁矩和自旋磁矩共同贡献。此外,从极化子输运的图像解释了手性诱导自旋选择效应的来源,并利用其电输运特性,设计了手性异质结器件,发现其手性电阻可达7%,整流比达48。
中图分类号:
[1] RAY K, ANANTHAVEL S P, WALDECK D H, et al. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules[J]. Science, 1999, 283(5403):814-816. [2] NAAMAN R, WALDECK D H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules[J]. Annual Review of Physical Chemistry, 2015, 66:263-281. [3] QI D, KENAAN A, CUI D, et al. Novel insights into the selection to electrons spin of chiral structure[J]. Nano Energy, 2018, 52:142-152. [4] NAAMAN R, PALTIEL Y, WALDECK D H. Chiral molecules and the electron spin[J]. Nature Reviews Chemistry, 2019, 3(4):250-260. [5] NAAMAN R, PALTIEL Y, WALDECK D H. Chiral molecules and the spin selectivity effect[J]. The Journal of Physical Chemistry Letters, 2020, 11(9):3660-3666. [6] YANG Y, DA COSTA R C, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J]. Nature Photonics, 2013, 7(8):634-638. [7] OUCHI H, KIZAKI T, YAMATO M, et al. Impact of helical organization on the photovoltaic properties of oligothiophene supramolecular polymers[J]. Chemical Science, 2018, 9(15):3638-3643. [8] KIM Y H, ZHAI Y, LU H, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode[J]. Science, 2021, 371(6534):1129-1133. [9] MOFFITT W. Optical rotatory dispersion of helical polymers[J]. The Journal of Chemical Physics, 1956, 25(3):467-478. [10] TINOCO I, Jr, WOODY R W, BRADLEY D F. Absorption and rotation of light by helical polymers: the effect of chain length[J]. The Journal of Chemical Physics, 1963, 38(6):1317-1325. [11] TINOCO I, Jr, WOODY R W. Optical rotation of oriented helices IV: a free electron on a helix[J]. The Journal of Chemical Physics, 1964, 40(1):160-165. [12] BRADLEY D F, TINOCO I, Jr, WOODY R W. Absorption and rotation of light by helical oligomers: the nearest neighbor approximation[J]. Biopolymers: Original Research on Biomolecules, 1963, 1(3):239-267. [13] JOHNSON W C, Jr, TINOCO I, Jr. Circular dichroism of polypeptide solutions in the vacuum ultraviolet[J]. Journal of the American Chemical Society, 1972, 94(12):4389-4390. [14] SAKURAI S, OKOSHI K, KUMAKI J, et al. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite[J]. Journal of the American Chemical Society, 2006, 128(17):5650-5651. [15] BEN MOSHE A, SZWARCMAN D, MARKOVICH G. Size dependence of chiroptical activity in colloidal quantum dots[J]. ACS Nano, 2011, 5(11):9034-9043. [16] GUTIERREZ R, DÍAZ E, NAAMAN R, et al. Spin-selective transport through helical molecular systems[J]. Physical Review B, 2012, 85(8):081404. [17] GUO A M, SUN Q. Spin-selective transport of electrons in DNA double helix[J]. Physical Review Letters, 2012, 108(21):218102. [18] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25):1698. [19] KULKARNI C, MONDAL A K, DAS T K, et al. Highly efficient and tunable filtering of electrons spin by supramolecular chirality of nanofiber-based materials[J]. Advanced Materials, 2020, 32(7):1904965. [20] MISHRA S, PIRBADIAN S, MONDAL A K, et al. Spin-dependent electron transport through bacterial cell surface multiheme electron conduits[J]. Journal of the American Chemical Society, 2019, 141(49):19198-19202. [21] MISHRA S, MONDAL A K, PAL S, et al. Length-dependent electron spin polarization in oligopeptides and DNA[J]. The Journal of Physical Chemistry C, 2020, 124(19):10776-10782. [22] MISHRA D, MARKUS T Z, NAAMAN R, et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane[J]. Proceedings of the National Academy of Sciences, 2013, 110(37):14872-14876. [23] KIRAN V, MATHEW S P, COHEN S R, et al. Helicenes:a new class of organic spin filter[J]. Advanced Materials, 2016, 28(10):1957-1962. [24] KETTNER M, MASLYUK V V, NÜRENBERG D, et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes[J]. The Journal of Physical Chemistry Letters, 2018, 9(8):2025-2030. [25] XIE Z, MARKUS T Z, COHEN S R, et al. Spin specific electron conduction through DNA oligomers[J]. Nano Letters, 2011, 11(11):4652-4655. [26] STEMER D M, ABENDROTH J M, CHEUNG K M, et al. Differential charging in photoemission from mercurated DNA monolayers on ferromagnetic films[J]. Nano Letters, 2020, 20(2):1218-1225. [27] DOR O B, YOCHELIS S, RADKO A, et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field[J]. Nature Communications, 2017, 8(1):1-7. [28] MISHRA S, MONDAL A K, SMOLINSKY E Z B, et al. Spin filtering along chiral polymers[J]. Angewandte Chemie International Edition, 2020, 59(34):14671-14676. [29] JIA L, WANG C, ZHANG Y, et al. Efficient spin selectivity in self-assembled superhelical conducting polymer microfibers[J]. ACS Nano, 2020, 14(6):6607-6615. [30] ZHANG L, HAO Y, QIN W, et al. Chiral-induced spin selectivity: a polaron transport model[J]. Physical Review B, 2020, 102(21):214303. [31] SUDA M, THATHONG Y, PROMARAK V, et al. Light-driven molecular switch for reconfigurable spin filters[J]. Nature Communications, 2019, 10(1):1-7. [32] WANG Y, URBAS A, LI Q. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches[J]. Journal of the American Chemical Society, 2012, 134(7):3342-3345. |
[1] | 李超,赵丽娟,张瑶,任冬梅*. HPLC法直接拆分dracocephins A对映异构体[J]. 山东大学学报(理学版), 2014, 49(1): 36-38. |
[2] | 王敏杰 朱连轩 赵安庆 袁超. 四面体络离子(CrO4)4-电子顺磁共振g因子的理论计算[J]. J4, 2010, 45(1): 27-30. |
|