您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (6): 95-102.doi: 10.6040/j.issn.1671-9352.0.2020.463

• • 上一篇    

一类张量特征值反问题的可解性条件

代丽芳,梁茂林*,冉延平   

  1. 天水师范学院数学与统计学院, 甘肃 天水 741001
  • 发布日期:2021-06-03
  • 作者简介:代丽芳(1981— ),女,硕士,讲师,研究方向为数值线性代数. E-mail:dailf2005@163.com*通信作者简介:梁茂林(1981— ),男,博士,副教授,研究方向为数值多重线性代数. E-mail:liangml2005@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961057);甘肃省高等学校科研基金资助项目(2018B-48);天水师范学院创新能力提升基金资助项目(CXT2019-36)

Solvability conditions for a class of tensor inverse eigenvalue problems

DAI Li-fang, LIANG Mao-lin*, RAN Yan-ping   

  1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, Gansu, China
  • Published:2021-06-03

摘要: 利用张量Moore-Penrose广义逆的性质,得到Einstein积意义下Hermitian张量特征值反问题的可解性条件及其通解表达式。同时,对于任意给定张量,考虑上述反问题约束下的最佳逼近问题,得到它的唯一解表达式。给出的数值试验证实了这些结果的可行性。

关键词: Hermitian张量, 特征值反问题, Moore-Penrose广义逆, 最佳逼近

Abstract: Using the properties of Moore-Penrose generalized inverses of tensors, the solvability conditions for the existence of the solution to the inverse eigenvalue problem of Hermitian tensors with Einstein product, as well as the general solution, are obtained. Meanwhile, the unique solution to the associated tensor approximation problem for any given tensor is given. The performed numerical results illustrate the feasibility of these results.

Key words: Hermitian tensors, inverse eigenvalue problem, Moore-Penrose generalized inverse, optimal approximation

中图分类号: 

  • O241.6
[1] COPPI R, BOLASCO S. Multiway data analysis[M]. Amsterdam: Elsevier Press, 1989.
[2] GREUB W. Multilinear algebra[M]. New York: Springer-Verlag Press, 1978.
[3] KOLDA T, BADER B. Tensor decompositions and applications[J]. SIAM Rev, 2009, 51(3):455-500.
[4] QI Liqun, LUO Ziyan. Tensor analysis: spectral theory and special tensors[M]. Philadelphia: Society for Industrial and Applied Mathematics Press, 2017.
[5] BRAZELL M, LI N, NAVASCA C, et al. Solving multilinear systems via tensor inversion[J]. SIAM J Matrix Anal Appl, 2013, 34(2):542-270.
[6] DING Weiyang, WEI Yimin. Solving multi-linear systems with M-tensors[J]. J Sci Comput, 2016, 68:689-715.
[7] YE Ke, HU Shenglong. Inverse eigenvalue problem for tensors[J]. Comm Math Sci, 2017, 15(6):1627-1649.
[8] 周树荃,戴华.代数特征值反问题[M]. 郑州:河南科学技术出版社,1991. ZHOU Shuquan, DAI Hua. Algebraic eigenvalue inverse problems[M]. Zhengzhou: Henan Science and Technology Press, 1991.
[9] EINSTEIN A. The foundation of the general theory of relativity[J]. Anna Der Phys, 1916, 49(7):769-822.
[10] QI Liqun. Theory of tensors(hypermatrices)[R/OL].(2014-09-10)[2020-12-15]. ftp://159.226.92.8/pub/yyx/optimi/ICNONLA-PLENARY/Prof.%20Liqun%20Qi.pdf.
[11] ITSKOV M. On the theory of fourth-order tensors and their applications in computational mechanics[J]. Comput Meth Appl Mech Eng, 2000, 189(2):419-438.
[12] 沈世镒. Toeplitz张量的本征值分布公式及其应用[J]. 高校应用数学学报(A辑),1987,2:151-163. SHEN Shiyi. On the distribution formula of the eigenvalue of Toeplitz tensor and its application[J]. Appl Math J Chinese Univ, 1987, 2:151-163.
[13] CUI Lubin, CHEN Chuan, LI Wen, et al. An eigenvalue problem for even order tensors with its applications[J]. Linear Multilinear Algebra, 2016, 64(4):602-621.
[14] LIANG Maolin, ZHENG Bing, ZHAO Ruijuan. Tensor inversion and its application to the tensor equations with Einstein product[J]. Linear Multilinear Algebra, 2019, 67(4):843-870.
[15] NI Guyan. Hermitian tensor and quantum mixed state[EB/OL].(2019-08-23)[2020-12-15]. https://arxiv.org/pdf/1902.02640.pdf.
[16] SUN Lizhu, ZHENG Baodong, BU Changjiang, et al. Moore-Penrose inverse of tensors via Einstein product[J]. Linear Multilinear Algebra, 2016, 64(4):686-698.
[17] LIANG Maolin, ZHENG Bing. Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems[J]. Comput Math Appl, 2019, 77:1282-1293.
[18] JI Jun, WEI Yimin. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product[J]. Front Math China, 2017, 12(6):1319-1337.
[19] HIGHAM N. Computing a nearest symmetric positive semidefinite matrix[J]. Linear Algebra Appl, 1988, 103:103-118.
[20] YUAN Yongxin, DAI Hua. The nearness problems for symmetric matrix with a submatrix constraint[J]. Comput Appl Math, 2008, 213:224-231.
[21] HUANG G, NOSCHESE S, REICHEL L. Regularization matrices determined by matrix nearness problems[J]. Linear Algebra Appl, 2016, 502:41-57.
[22] BADER B, KOLDA T, MAYO J, et al. MATLAB Tensor Toolbox Version 3.2[EB/OL].(2015-02-18)[2020-12-15]. http://www.tensortoolbox.org.
[1] 梁茂林,代丽芳,杨晓亚. 线性流形上行反对称矩阵反问题的最小二乘解及最佳逼近[J]. J4, 2012, 47(4): 121-126.
[2] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
[3] 宋俊玲,田金亭,赵建立 . 广义(R,S)-对称矩阵反问题的最小二乘解[J]. J4, 2008, 43(2): 48-51 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!