您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 11-15.doi: 10.6040/j.issn.1671-9352.0.2021.654

• • 上一篇    

融合余积AEuclid ExtraCA@BA的性质

李晓霞,乔虎生*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-10-06
  • 作者简介:李晓霞(1995— ), 女, 硕士研究生, 研究方向为半群代数理论. E-mail:1711890671@qq.com*通信作者简介:乔虎生(1974— ), 男, 博士, 教授, 博士生导师, 研究方向为半群代数理论. E-mail:gsqiaohsh@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961058)

Properties of amalgamated coproduct AEuclid ExtraCA@BA

LI Xiao-xia, QIAO Hu-sheng*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-10-06

摘要: 设S是幺半群, A是右S-系, B是A的真子系, 研究了一般性的融合余积AEuclid ExtraCA@BA。 若A为S, B为S的真右理想I, 则融合余积AEuclid ExtraCA@BA就是研究幺半群同调分类的重要工具A(I)。 讨论了融合余积AEuclid ExtraCA@BA分别满足条件(E'), 条件(EP), 条件(PF)等性质的等价刻画。 最后推广了A(I)的相应结论。

关键词: 融合余积, 右S-系, 子系

Abstract: Let S be a monoid, A a right S-act and B a proper subact of A. The general amalgamated coproduct AEuclid ExtraCA@BA is investigated. If taking A be S, B is the proper right ideal of S, then amalgamated coproduct AEuclid ExtraCA@BA is exactly the important tool A(I)to study the homological classification of monoids. We discuss the equivalent characterizations of the amalgamated coproduct AEuclid ExtraCA@BA satisfying condition(E'), condition(EP), condition(PF), etc. Finally, the corresponding results of the A(I)is generalized.

Key words: amalgamated coproduct, right S-act, subact

中图分类号: 

  • O152.7
[1] 刘仲奎,乔虎生.半群的S-系理论[M].北京:科学出版社,2008. LIU Zhongkui, QIAO Husheng. The S-act theory of semigroups[M]. Beijing: Science Press, 2008.
[2] 许阳,乔虎生. S-系的 Rees 商与融合余积的性质及应用[D]. 兰州: 西北师范大学数学与统计学院, 2021. XU Yang, QIAO Husheng. Properties and applications of Rees factor and Amalgam of S-acts[D]. Lanzhou: College of Mathematics and Statistics, Northwest Normal University, 2021.
[3] HOWIE M. Fundamentals of semigroup theory[M]. London: Oxford Science Publications, 1995.
[4] LAAN V. On a generalization of strong flatness[J]. Acta Commentationes Universitatis Tartuensis de Mathematica, 1998, 2: 55-60.
[5] ZARE A, GOLCHIN A, MOHAMMADZADEH H. Strongly torsion free acts over monoids[J]. Asian-European Journal of Mathematics, 2013, 3:1-22.
[6] GOLCHIN A, MOHAMMADZADEH H. On condition(EP)[J]. International Mathematical Forum, 2007, 19:911-918.
[7] LIANG Xingliang, LUO Yanfeng. On a generalization of weak pullback flatness[J]. Communications in Algebra, 2016, 44: 3796-3817.
[8] 乔虎生, 何利强. C(E')系对幺半群的刻画[J]. 山东大学学报(理学版), 2020, 55(4):1-5. QIAO Husheng, HE Liqiang. Characterization of monoids by C(E')acts[J]. Journal of Shangdong University(Natural Science), 2020, 55(4):1-5.
[9] KNAUER U, MIKHALEV A V. Wreath products of acts over monoids: I. regular and inverse acts[J]. Journal of Pure and Applied Algebra, 1988, 51(3):251-260.
[1] 李伟,许文锋,李宏余. 基于独立子系统的模糊DEA模型研究[J]. J4, 2012, 47(9): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!