《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 103-110.doi: 10.6040/j.issn.1671-9352.0.2021.784
• • 上一篇
索孟鸽,陈京荣*,张娟敏
SUO Meng-ge, CHEN Jing-rong*, ZHANG Juan-min
摘要: 对于一个图G和一个正整数k,若图G中任意一条阶数为k的路都至少包含集合S⊆V(G)中的一个顶点,那么集合S就为图G的一个k-路点覆盖。最小的k-路点覆盖基数记为ψk(G),为图G的k-路点覆盖数。研究圈图分别与圈图、完全图及完全二部图做笛卡尔乘积图的k-路点覆盖,得到ψk(G)相关的精确值和上下界。
中图分类号:
[1] BRESAR B, KARDOS F, KATRENIC J, et al. Minimum k-path vertex cover[J]. Discrete Applied Mathematics, 2011, 159(12):1189-1195. [2] BRESAR B, KARDOS F, KATRENIS J, et al. On the vertex k-path cover[J]. Discrete Applied Mathematics, 2013, 161(13-14): 1943-1949. [3] NOVOTNY M. Design and analysis of a generalized canvas protocol[C] //Proceedings of the 4th IFIP WG 11.2 International Conference on Information Security Theory and Practices: Security and Privacy of Pervasive Systems and Smart Dervices, Berlin Heidelberg: Springer-Verlag, 2010: 106-121. [4] TU Jianhua, ZHOU Wenli. A factor 2 approximation algorithm for the vertex cover P3 problem[J]. Information Processing Letters, 2011, 111(14): 683-686. [5] TU Jianhua, YANG Fengmei. The vertex cover P3 problem in cubic graphs[J]. Information Processing Letters, 2013, 113: 481-485. [6] JAKOVAC M, TARANENKO A. On the k-path vertex cover of some graphs products[J]. Discrete Mathematics, 2013, 313: 94-100. [7] JAKOVAC M. The k-path vertex cover of rooted product graphs[J]. Discrete Applied Mathematics, 2015, 187: 111-119. [8] 张弼弢.一些乘积图k-路顶点覆盖[D].天津:天津师范大学,2016. ZHANG Bitao. The k-path vertex cover of some product graphs[D]. Tianjin: Tianjin Normal University, 2016. [9] LI Zhao, ZUO Liancui. The k-path vertex cover in Cartesian product graphs and complete bipartite graphs[J]. Applied Mathematics and Computation, 2018, 331: 69-79. [10] ROSENFELD V. The independence polynomial of rooted products of graphs[J]. Discrete Applied Mathematics, 2010,158:551-558. [11] YANNAKAKIS M. Node-deletion problem on bipartite graphs[J]. SIAM Journal on Computing, 1981, 10(2): 310-327. [12] BOLIAC R, CAMERON K, LOZIN V V. On computing the dissociation number and the induced matching number of bipartite graphs[J]. ARS Combinatoria, 2004, 72: 241-253. [13] ORLOVICH Y, DOLGUI A, FINKE G, et al. The complexity of dissociation set problems in graphs[J]. Discrete Applied Mathematics, 2011, 159(13): 1352-1366. [14] KARDOS F, KATRENIC J, SCHIERMEYER I. On computing the minimum 3-path vertex cover and dissociation number of graphs[J]. Theoretical Computer Science, 2011, 412(50):7009-7017. |
[1] | 邓梓健,刘彬,火博丰. 一类均匀拟阵的二阶圈图连通性及哈密顿性[J]. 《山东大学学报(理学版)》, 2022, 57(5): 92-96. |
[2] | 谭钧铭,强会英,王洪申. 单圈图的邻和可区别边染色[J]. 《山东大学学报(理学版)》, 2022, 57(2): 78-83. |
[3] | 张生桂,陈祥恩. 近完全图的点可区别Ⅰ-全染色及Ⅵ-全染色[J]. 《山东大学学报(理学版)》, 2021, 56(5): 23-25. |
[4] | 王笔美,李敬文,顾彦波,邵淑宏. 单圈图的边幻和全标号[J]. 《山东大学学报(理学版)》, 2020, 55(9): 42-50. |
[5] | 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30. |
[6] | 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71. |
[7] | 杨陈, 马海成. 两类特殊三圈图的正负惯性指数和零度[J]. 山东大学学报(理学版), 2015, 50(02): 32-37. |
[8] | 李振琳,卢君龙,吕新忠. 关于图的符号边全控制[J]. J4, 2012, 47(6): 83-86. |
[9] | 蔡华, 苗杰. n阶单圈图的边平均Wiener指标[J]. J4, 2012, 47(10): 70-74. |
[10] | 周旭冉, 王力工*. 一类双圈图的两种指标的排序[J]. J4, 2011, 46(11): 44-47. |
[11] | 袁秀华. 完全图的全符号控制数[J]. J4, 2010, 45(8): 43-46. |
[12] | 刘海英 马成刚 王志平. 刺图乘积上的Graham猜想[J]. J4, 2009, 44(8): 25-30. |
[13] | 袁秀华. 图的符号边全控制数[J]. J4, 2009, 44(8): 21-24. |
[14] | 何文玉, 陈祥恩*. 完全二部图K5,n的点可区别IE全染色[J]. J4, 2009, 44(2): 91-96. |
[15] | 刘晓妍. [s,t]-图泛圈性的一个充分条件[J]. J4, 2008, 43(12): 28-30. |
|