您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 45-54.doi: 10.6040/j.issn.1671-9352.0.2021.685

• • 上一篇    

极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子

史鹏伟,陶双平*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-12-05
  • 作者简介:史鹏伟(1997— ),男,硕士研究生,研究方向为调和分析. E-mail:Shipengwei2331@163.com *通信作者简介:陶双平(1964— ),男,教授,博士生导师,研究方向为调和分析及其应用. E-mail:taosp@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(12161080)

Parameterized Littlewood-Paley operators with rough kernel on grand variable Herz spaces

SHI Peng-wei, TAO Shuang-ping*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-12-05

摘要: 借助变指标Lebesgue空间上的有界性,利用函数分层分解和实变技巧,得到了参数型粗糙核Marcinkiewicz积分、面积积分和 Littlewood-Paley g*λ函数在极大变指标Herz空间上的有界性。同时也证明了面积积分和Littlewood-Paley g*λ函数高阶交换子的有界性。

关键词: 极大变指标Herz空间, 粗糙核, 参数型Littlewood-Paley算子, 高阶交换子

Abstract: With the help of the boundedness of the Lebesgue space with variable exponent, by applying hierarchical decomposition of function and real variable techniques, the boundedness of the parameterized Marcinkiewicz integral, the area integral and Littlewood-Paley g*λ function with rough kernel is obtained on grand variable Herz spaces. Meanwhile, the boundedness of higher order commutators generated by the area integral and Littlewood-Paley g*λ function is also proved on grand variable Herz spaces.

Key words: grand variable Herz space, rough kernel, parameterized Littlewood-Paley operator, higher order commutator

中图分类号: 

  • O174.2
[1] HÖRMANDER L. Estimates for translation invariant operators in LP spaces[J]. Acta Mathematica, 1960, 104(1):93-140.
[2] CHEN Yanping, DING Yong. Compactness characterization of commutators for Littlewood-Paley operators[J]. Kodai Mathematical Journal, 2009, 32(2):256-323.
[3] WANG Lijuan, TAO Shuangping. Parameterized Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent[J]. Analysis in Theory and Applications, 2015, 31(1):13-24.
[4] IZUKI M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59(3):461-472.
[5] IZUKI M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Analysis Mathematica, 2010, 36(1):33-50.
[6] WANG Hongbin, WU Yihong. Higher-order commutators of parameterized Littlewood-Paley operators on Herz spaces with variable exponent[J]. Transactions of A. Razmadze Mathematical Institute, 2017, 171(2):238-251.
[7] HAMMAD N, HUMBERTO R, MUHAMMA D. A note on the boundedness of sublinear operators on grand variable Herz spaces[J]. Journal of Inequalities and Applications, 2020, 2020(1):1-13.
[8] ALMEIDA A, DRIHEM D. Maximal, potential and singular type operators on Herz spaces with variable exponents[J]. Journal of Mathematical Analysis and Applications, 2012, 394(2):781-795.
[9] HAMMAD N, HUMBERTO R, MUHAMMA D. Boundedness of the Marcinkiewicz integral on grand variable Herz spaces[J]. Journal of Mathematical Inequalities, 2021, 15(2):739-753.
[10] WANG Liwei. Marcinkiewicz integral operators and commutators on Herz spaces with variable exponents[J/OL]. Journal of Function Spaces, 2014[2021-10-21]. https://doi.org/10.1155/2014/430365.
[11] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11):100-105. YAO Junqing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent [J]. Journal of Shandong University(Natural Science), 2017, 52(11):100-105.
[12] QU Meng, WANG Jie. A note on fractional integral operators on Herz spaces with variable exponent[J]. Journal of Inequalities and Applications, 2016, 2016(1):1-11.
[13] WANG Hongbin. Anisotropic Herz spaces with variable exponents[J]. Communications in Mathematical Analysis, 2015, 18(2):1-14.
[14] 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2018, 53(6):38-43. XIN Yinping, TAO Shuangping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-Hardy spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2018, 53(6):38-43.
[15] DING Yong, LU Shanzhen. Higher order commutators for a class of rough operators[J]. Arkiv för Matematik, 1999, 37(1):33-44.
[16] WU Jianglong. Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent[J]. Kyoto Journal of Mathematics, 2014, 54(3):483-495.
[17] WANG Hongbin, YAN Dunyan. Commutators of Marcinkiewicz integrals with rough kernels on Herz-type Hardy spaces with variable exponent[J]. Journal of Mathematical Inequalities, 2018, 12(4):1173-1188.
[18] NAKAI E, SAWANO Y. Hardy spaces with variable exponents and generalized Campanato spaces[J]. Journal of Functional Analysis, 2012, 262(9):3665-3784.
[1] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[2] 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87.
[3] 瞿萌,束立生. 一类带粗糙核的Marcinkiewicz积分算子的Lp有界性[J]. J4, 2011, 46(6): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!