您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 62-67.doi: 10.6040/j.issn.1671-9352.0.2021.502

• • 上一篇    

一类k-Hessian方程爆破解的存在性和不存在性

段对花,高承华*,王晶晶   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-03-15
  • 作者简介:段对花(1995— ),女,硕士研究生,研究方向为常微分方程与动力系统. E-mail:duanduihua@163.com*通信作者简介:高承华(1984— ),男,博士,教授,研究方向为常微分方程与动力系统. E-mail:gaokuguo@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961060);甘肃省自然科学基金资助项目(18JR3RA084);西北师范大学研究生科研资助项目(2020KYZZ001108);甘肃省教育厅:优秀研究生“创新之星”项目(2021CXZX-261)

Existence and nonexistence of blow-up solutions for a general k-Hessian equation

DUAN Dui-hua, GAO Cheng-hua*, WANG Jing-jing   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-03-15

摘要: 运用单调迭代方法,在非线性项满足适当的增长条件下研究一类k-Hessian方程爆破解的存在性和不存在性,并得到了一些有趣的结果。

关键词: 单调迭代法, k-Hessian方程, 爆破解, 存在性和不存在性

Abstract: By applying the monotone iterative method,the existence and nonexistence of blow-up solutions for a general k-Hessian equation are studied under proper growth conditions of nonlinear term, and some interesting results are obtained.

Key words: monotone iterative method, k-Hessian equation, blow-up solutions, existence and nonexistence

中图分类号: 

  • O175.8
[1] TRUDINGER N S, WANG X J. The Monge-Ampère equations and its geometric applications[J]. Advanced Lectures in Mathematics, 2008, 7(1):467-524.
[2] SHIVAJI R, SIM I, SON B. A uniqueness result for a semipositonep-Laplacian problem on the exterior of a ball[J]. Journal of Mathematical Analysis and Applications, 2017, 445(1):459-475.
[3] LIU Ronghua, WANG Fanglei, AN Yukun. On radial solutions for Monge-Ampère equations[J]. Turkish Journal of Mathematics, 2018, 42(4):1590-1609.
[4] DAI Guowei. Bifurcation and admissible solutions for the Hessian equation[J]. Journal of Functional Analysis, 2017, 273(10):3200-3240.
[5] MA Ruyun, HE Zhidian, YAN Dongliang. Three radially symmetrick-admissible solutions for k-Hessian equation[J]. Complex Variables and Elliptic Equations, 2019, 64(8):1353-1363.
[6] COVEI D. A necessary and sufficient conditions for the existence of the positive radial solutions to Hessian equation and systems with weights[J]. Acta Mathematica Sinica, 2017, 37(1):47-57.
[7] GAO Chenghua, HE Xingyue, RAN Maojun. On a power-type coupled system of k-Hessian equations[J]. Quaestiones Mathematicae, 2020. https://doi.org/10.2989/16073606.2020.1816586.
[8] 梁载涛, 单雪梦. k-Hessian方程径向解的存在性与多解性[J]. 数学物理学报, 2021,41A(1):63-68. LIANG Zaitao, SHAN Xuemeng. Multiplicity of radial solutions of k-Hessian equations[J]. Acta Mathematica Scientia A, 2021, 41A(1):63-68.
[9] HE Jianxin, ZHANG Xinguang, LIU Lishan, et al. Existence and nonexistence of radial solutions of the Dirichlet problem for a class of general k-Hessian equations[J]. Nonlinear Analysis: Modelling and Control, 2018, 23(4):475-492.
[10] WEI Wei. Existence and multiplicity for negative solutions of k-Hessian equations[J]. Journal of Differential Equations, 2017, 263(6):615-640.
[11] ZHANG Xuemei, FENG Meiqiang. The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation[J]. Journal of Differential Equations, 2019, 267(8):4626-4672.
[12] ZHANG Xuemei, FENG Meiqiang. Boundary blow-up solutions to the k-Hessian equation with singular weights[J]. Nonlinear Analysis, 2018, 167:51-66.
[13] ZHANG Xuemei. On a singular k-Hessian equation[J]. Applied Mathematics Letters, 2019, 97:60-66.
[1] 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30.
[2] 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36.
[3] 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!