《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 21-29.doi: 10.6040/j.issn.1671-9352.7.2021.083
• • 上一篇
郑承宇,王新*,王婷,邓亚萍,尹甜甜
ZHENG Cheng-yu, WANG Xin*, WANG Ting, DENG Ya-ping, YIN Tian-tian
摘要: 针对现有Word2Vec和Glove等静态词向量表征方法无法解决文本完整语义的问题,结合ALBERT预训练语言模型和TextCNN卷积神经网络,提出一种用于多标签医疗文本分类的深层神经网络模型ALBERT-TextCNN。该模型采用ALBERT预训练语言模型进行动态字向量表示,通过其内部多层双向的Transfomer结构获取更高效的文本向量表达,并引入TextCNN卷积神经网络模型构造多标签分类器进行训练,提取不同抽象层次的语义信息特征。在中文健康问句数据集上进行算法性能测试,实验结果表明,该模型分类的整体F1值达到了90.5%,能有效提升医疗文本的多标签分类效果。
中图分类号:
[1] 廖开际, 邹珂欣, 席运江. 一种在线医疗社区问答文本实体识别方法:基于卷积神经网络和双向长短期记忆神经网络[J]. 科技管理研究, 2021, 41(8):173-179. LIAO Kaiji, ZOU Kexin, XI Yunjiang. An online medical community q&a text entity recognition method: based on CNN and BILSTM[J]. Science and Technology Management Research, 2021, 41(8):173-179. [2] 熊回香, 杨梦婷, 李玉媛. 基于深度学习的信息组织与检索研究综述[J]. 情报科学,2020,38(3):3-10. XIONG Huixiang, YANG Mengting, LI Yuyuan. Information organization and retrieval research based on deep learning[J]. Information Science, 2020, 38(3):3-10. [3] 程艳, 孙欢, 陈豪迈, 等. 融合卷积神经网络与双向GRU的文本情感分析胶囊模型[J]. 中文信息学报,2021,35(5):118-129. CHENG Yan, SUN Huan, CHEN Haomai, et al. Text sentiment analysis capsule model combining convolutional neural network and bidirectional GRU[J]. Journal of Chinese Information Processing, 2021, 35(5):118-129. [4] 张鹏, 孙博文, 李唯实, 等. 基于LSTM的钓鱼邮件检测系统[J]. 北京理工大学学报,2020,40(12):1289-1294. ZHANG Peng, SUN Bowen, LI Weishi, et al. Phishing mail detection system based on LSTM neural network[J]. Transactions of Beijing Institute of Technology, 2020, 40(12):1289-1294. [5] 林敏鸿, 蒙祖强. 基于注意力神经网络的多模态情感分析[J]. 计算机科学,2020,47(增刊2):508-514,548. LIN Minhong, MENG Zuqiang. Multimodal sentiment analysis based on attention neural network[J]. Computer Science, 2020, 47(Suppl.2):508-514, 548. [6] CHEN Guibinm, YE Deheng, XING Zhenchang, et al. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization[C] //2017 International Joint Conference on Neural Networks(IJCNN). Anchorage, USA:IEEE, 2017:2377-2383. [7] ALY R, REMUS S, BIEMANN C. Hierarchical multi-label classification of text with capsule networks[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:Student Research Workshop. Florence, Italy:ACL, 2019:323-330. [8] DU Jingcheng, CHEN Qingyu, PENG Yifan, et al. Ml-net:multi-label classification of biomedical texts with deep neural networks[J]. Journal of the American Medical Informatics Association, 2019, 26(11):1279-1285. [9] 赵亚欧, 张家重, 李贻斌, 等. 基于ELMo和Transformer混合模型的情感分析[J]. 中文信息学报,2021,35(3):115-124. ZHAO Yaou, ZHANG Jiazhong, LI Yibin, et al. Sentiment analysis based on hybrid model of ELMo and Transformer[J]. Journal of Chinese Information Processing, 2021, 35(3):115-124. [10] 段丹丹, 唐加山, 温勇, 等. 基于BERT模型的中文短文本分类算法[J]. 计算机工程,2021,47(1):79-86. DUAN Dandan, TANG Jiashan, WEN Yong, et al. Chinese short text classification algorithm based on BERT model[J]. Computer Engineering, 2021, 47(1):79-86. [11] LAN Z Z, CHEN M D, GOODMAN S, et al. Albert:a lite BERT for self-supervised learning of language representations [EB/OL].(2020-02-09)[2021-05-10]. https://arxiv.org/pdf/1909.11942.pdf. [12] DEVLIN J, CHANG M W, LEE K, et al. Bert:pre-training of deep bidirectional transformers for language understanding[EB/OL].(2019-05-24)[2021-05-10]. https://arxiv.org/pdf/1810.04805.pdf. [13] 温超东, 曾诚, 任俊伟, 等. 结合ALBERT和双向门控循环单元的专利文本分类[J]. 计算机应用,2021,41(2):407-412. WEN Chaodong, ZENG Cheng, REN Junwei, et al. Patent text classification based on ALBERT and bidirectional gated recurrent unit[J]. Journal of Computer Applications, 2021, 41(2):407-412. [14] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C] //Advances in Neural Information Processing Systems. Montreal, Canada: NIPS, 2014: 3104-3112. [15] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].(2016-05-16)[2021-05-10]. https://arxiv.org/pdf/1409.0473.pdf. [16] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2021-05-10]. https://arxiv.org/pdf/1301.3781.pdf. [17] KIM Y. Convolutional neural networks for sentence classification[EB/OL].(2014-09-03)[2021-05-10]. https://arxiv.org/pdf/1408.5882.pdf. [18] 张志昌, 张治满, 张珍文. 融合局部语义和全局结构信息的健康问句分类[J]. 西安电子科技大学学报,2020,47(2):9-15. ZHANG Zhichang, ZHANG Zhiman, ZHANG Zhenwen. Classifying health questions with local semantic and global structural information[J]. Journal of Xidian University, 2020, 47(2):9-15. |
[1] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[2] | 王佳麒,杨沐昀,赵铁军,赵臻宇. 检务文书检索数据集的构建[J]. 《山东大学学报(理学版)》, 2020, 55(7): 81-87. |
[3] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[4] | 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25. |
[5] | 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66-72. |
[6] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
[7] | 曹蓉,黄金柱,易绵竹. 信息检索—DARPA人类语言技术研究的最终指向[J]. 山东大学学报(理学版), 2016, 51(9): 11-17. |
[8] | 奉国和,王丹迪,李媚婵. 基于SVD的档案学主题挖掘[J]. 山东大学学报(理学版), 2016, 51(1): 95-100. |
[9] | 谭金源,刁宇峰,杨亮,祁瑞华,林鸿飞. 基于BERT-SUMOPN模型的抽取-生成式文本自动摘要[J]. 《山东大学学报(理学版)》, 2021, 56(7): 82-90. |
|