《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 55-65.doi: 10.6040/j.issn.1671-9352.0.2021.228
• • 上一篇
贾艺菲,郭俐辉*,白寅松
JIA Yi-fei, GUO Li-hui*, BAI Yin-song
摘要: 研究了相对论Chaplygin气体欧拉方程组的阴影波解的存在性,利用超压缩熵条件确定了阴影波解的弱唯一性,最后在Schwartz广义函数意义下,证明了超压缩阴影波解收敛到delta激波解。
中图分类号:
[1] GUO Lihui, SHENG Wancheng, ZHANG Tong. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system[J]. Communications on Pure and Applied Analysis, 2010, 9(2):431-458. [2] KORCHINSKI D J. Solution of a Riemann problem for a 2×2 system of conservation laws possessing no classical weak solution[D]. New York: Adelphi University, 1977. [3] KEYFITZ B L, KRANZER H C. A viscosity approximation to a system of conservation laws with no classical Riemann solution[J]. Nonlinear Hyperbolic Problems: Lecture Notes in Mathematics, 1989, 1402:185-197. [4] KEYFITZ B L, KRANZER H C. Spaces of weighted measures for conservation laws with singular shock solutions[J]. Journal of Differential Equations, 1995, 118(2):420-451. [5] KRANZER H C, KEYFITZ B L.A strictly hyperbolic system of conservation laws admitting singular shocks[J]. Nonlinear Evolution Equations that Change Type: IMA Volumes in Mathematics and its Applications, 1990, 27:107-125. [6] TAN Dechun, ZHANG Tong, ZHENG Yuxi. Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws[J]. Journal of Differential Equations, 1994, 112(1):1-32. [7] CHENG Hongjun, YANG Hanchun. Delta shock waves in chromatography equations[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2):475-485. [8] MITROVIC D, NEDELJKOV M. Delta shock waves as a limit of shock waves[J]. Journal of Hyperbolic Differential Equations, 2007, 4(4):629-653. [9] SHEN Chun. The Riemann problem for the Chaplygin gas equations with a source term[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2016, 96(6):681-695. [10] SHEN Chun. Delta shock wave solution for a symmetric Keyfitz-Kranzer system[J]. Applied Mathematics Letters, 2018, 77:35-43. [11] SHEN Chun.The multiplication of distributions in the one-dimensional Eulerian droplet model[J/OL]. Applied Mathematics Letters, 2021[2021-03-10]. https://doi.org/10.1016/j.aml.2020.106796. [12] SUN Meina. The multiplication of distributions in the study of delta shock wave for the nonlinear chromatography system[J]. Applied Mathematics Letters, 2019, 96:61-68. [13] SUN Meina. The singular solutions to a nonsymmetric system of Keyfitz-Kranzer type with initial data of Riemann type[J]. Mathematical Methods in the Applied Sciences, 2020, 43(2):682-697. [14] SUN Meina. Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state[J]. Nonlinear Analysis: Real World Applications, 2020, 53:103068. [15] ZHANG Yu, YANG Hanchun. Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas[J]. Journal of Mathematical Analysis and Applications, 2016, 435(2):1160-1182. [16] NEDELJKOV M. Shadow waves: entropies and interactions for delta and singular shocks[J]. Archive for Rational Mechanics and Analysis, 2010, 197(2):489-537. [17] DAW D A E, NEDELJKOV M. Shadow waves for pressureless gas balance laws[J]. Applied Mathematics Letters, 2016, 57:54-59. [18] DEDOVIC N, NEDELJKOV M. Delta shocks interactions and the wave front tracking method[J]. Journal of Mathematical Analysis and Applications, 2013, 403(2):580-598. [19] NEDELJKOV M. Higher order shadow waves and delta shock blow up in the Chaplygin gas[J]. Journal of Differential Equations, 2014, 256(11):3859-3887. [20] NEDELJKOV M. Split delta shocks: an overview[J]. Functional Analysis, Approximation and Computation, 2016, 8(1):61-77. [21] NEDELJKOV M, NEUMANN L, CBERGUGGENBERGER M, et al. Radially symmetric shadow wave solutions to the system of pressureless gas dynamics in arbitrary dimensions[J]. Nonlinear Analysis: Theory, Methods & Applications, 2017, 163:104-126. [22] NEDELJKOV M, RUŽICIC S. On the uniqueness of solution to generalized Chaplygin gas[J]. Discrete and Continuous Dynamical Systems. Series A, 2017, 37(8):4439-4460. [23] RUŽICIC S, NEDELJKOV M. Shadow wave tracking procedure and initial data problem for pressureless gas model[J]. Acta Applicandae Mathematicae, 2021, 171:10. [24] SUN Meina. Shadow wave solution for the generalized Langmuir isotherm in chromatography[J]. Archiv der Mathematik, 2016, 107(6):645-658. [25] CHENG Hongjun, YANG Hanchun. Riemann problem for the isentropic relativistic Chaplygin Euler equations[J]. Zeitschrift für Angewandte Mathematik und Physik, 2012, 63(3):429-440. |
[1] | 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77. |
[2] | 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61. |
[3] | 杜亚利,汪璇. 带非线性阻尼的非自治Berger方程的时间依赖拉回吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 30-41. |
[4] | 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65. |
[5] | 吴晓霞,马巧珍. 带有强阻尼的波方程在Rn上的时间依赖吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 22-29. |
|