《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 35-39.doi: 10.6040/j.issn.1671-9352.0.2022.220
Jingzhi CHANG1(),Chao YANG1,*(),Bing YAO2
摘要:
给出树的邻和可区别2-全染色方案,并结合三正则图最小消圈集的独立性以及消圈子图的无圈性,较为简洁地证明三正则图的邻和可区别全色数满足1-2猜想。进一步利用独立消圈集法确定r-正则图、Halin图以及路与路的笛卡尔乘积图的邻和可区别全色数。
中图分类号:
1 |
KAROŃSKIM , ŁUCZAKT , THOMASONA .Edge weights and vertex colours[J].Journal of Combinatorial Theory: Series B,2004,91(1):151-157.
doi: 10.1016/j.jctb.2003.12.001 |
2 |
KALKOWSKIM , KAROŃSKIM , PFENDERF .Vertex-coloring edge weightings: towards the 1-2-3-conjecture[J].Journal of Combinatorial Theory: Series B,2010,100(3):347-349.
doi: 10.1016/j.jctb.2009.06.002 |
3 |
ADDARIO-BERRYL , DALALK , MCDIARMIDC ,et al.Vertex-colouring edge-weightings[J].Combinatorica,2007,27(1):1-12.
doi: 10.1007/s00493-007-0041-6 |
4 |
ADDARIO-BERRYL , DALALK , REEDB A .Degree constrained subgraphs[J].Discrete Applied Mathematics,2008,156(7):1168-1174.
doi: 10.1016/j.dam.2007.05.059 |
5 |
WANGT , YUQ L .On vertex-coloring 13-edge-weighting[J].Frontiers of Mathematics in China,2008,3(4):581-587.
doi: 10.1007/s11464-008-0041-x |
6 |
PRZYBYŁOJ .The 1-2-3 Conjecture almost holds for regular graphs[J].Journal of Combinatorial Theory: Series B,2021,147,183-200.
doi: 10.1016/j.jctb.2020.03.005 |
7 | PRZYBYŁOJ , WOŹNIAKM .On a 1, 2 Conjecture[J].Discrete Mathematics and Theoretical Computer Science,2010,12(1):101-108. |
8 | KALKOWSKI M. A note on the 1, 2-Conjecture[D]. Poznan: Adam Mickiewicz University, 2010. |
9 |
RENH , YANGC , ZHAOT X .A new formula for the decycling number of regular graphs[J].Discrete Mathematics,2017,340(12):3020-3031.
doi: 10.1016/j.disc.2017.07.011 |
[1] | 宋红杰,巩相男,潘文华,徐常青. Halin图的邻和可区别全染色[J]. 山东大学学报(理学版), 2016, 51(4): 65-67. |
[2] | 姚京京, 徐常青. 最大度为3或4的图的邻和可区别全染色[J]. 山东大学学报(理学版), 2015, 50(02): 9-13. |
|