您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 115-123.doi: 10.6040/j.issn.1671-9352.4.2022.205

•   • 上一篇    下一篇

基于区间时序模型的船舶价格指数预测

徐圆圆1(),郭红月1,*(),王利东2   

  1. 1. 大连海事大学综合交通运输协同创新中心, 辽宁 大连 116026
    2. 大连海事大学理学院, 辽宁 大连 116026
  • 收稿日期:2022-08-02 出版日期:2024-01-20 发布日期:2024-01-19
  • 通讯作者: 郭红月 E-mail:yyxu_dmu@163.com;hyguo@dlmu.edu.cn
  • 作者简介:徐圆圆(1997—), 女, 硕士研究生, 研究方向为航运金融. E-mail: yyxu_dmu@163.com
  • 基金资助:
    国家自然科学基金资助项目(62006033);大连市高层次人才创新支持计划资助项目(2021RQ061);中央高校基本科研业务费专项资金资助项目(3132022279)

Interval time series models-based vessel price index forecasting

Yuanyuan XU1(),Hongyue GUO1,*(),Lidong WANG2   

  1. 1. Collabrative Innovation Center for Transport Studies, Dalian Maritime University, Dalian 116026, Liaoning, China
    2. School of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2022-08-02 Online:2024-01-20 Published:2024-01-19
  • Contact: Hongyue GUO E-mail:yyxu_dmu@163.com;hyguo@dlmu.edu.cn

摘要:

将远期运费协议(forward freight agreements, FFA)作为外生变量,研究其对船舶价格指数的具体影响。借助中点和极差方法, 分别建立区间型自回归模型和考虑区间型时间序列上、下限协整关系的区间型误差修正模型及带有外生变量FFA的区间型误差修正模型。将构建的模型用于对新造干散货船价格指数、二手干散货船价格指数进行的区间预测, 在平均绝对误差(MAE)、均方根误差(RMSE)指标上, 模型中加入协整项和FFA后预测精度更高。

关键词: 区间型时间序列, 船舶价格指数, 远期运费协议

Abstract:

This study considers the forward freight agreement (FFA) as an exogenous variable to analyze its specific impact on the vessel price index. With the center and range method, an interval autoregression model, an interval error correction model considering the co-integration between the upper and lower bounds of the interval time series, and interval error correction model with an additional incorporation of the exogenous variable FFA are established, respectively. The constructed models are employed to perform the interval prediction of the bulk carrier newship price index and bulk carrier secondhand price index. Based on the criteria MAE and RMSE, the prediction accuracy is higher after adding the co-integration term and FFA into the models.

Key words: interval time series, vessel price index, forward freight agreements

中图分类号: 

  • F551

表1

区间型干散货船价格指数示例"

月份新造干散货船月份二手干散货船
YtL YtU YtL YtU
2000-01 107.43 107.87 2010-07 214.67 215.25
2000-02 108.10 108.60 2010-08 214.77 214.77
2000-03 108.73 108.85 2010-09 216.31 218.94
2000-04 108.80 109.42 2010-10 216.18 219.08

图1

干散货船区间价格时间序列图"

图2

新造干散货船价格指数差分后的中点序列(a)和极差序列(b)"

图3

二手干散货船价格指数差分后的中点序列(a)和极差序列(b)"

表2

干散货船区间价格指数变量的基本统计分析"

船类 变量 均值 中值 最大值 最小值 标准差 偏度 峰度 JB统计量 P
新造船 YtL 136.55 130.94 191.21 105.23 20.71 0.80 0.03 28.68 0.00
YtU 137.19 131.40 191.58 105.36 20.90 0.78 -0.02 26.97 0.00
YCt 136.87 131.19 191.40 105.35 20.80 0.79 0.00 27.80 0.00
YRt 0.33 0.19 5.73 0.01 0.57 5.71 43.26 22 374.49 0.00
Δln YCt 0.14 0.08 4.42 -6.13 1.25 -0.36 4.91 276.86 0.00
Δln YRt 0.00 0.00 4.05 -3.29 1.26 0.10 0.07 0.53 0.76
二手船 YtL 126.18 118.35 216.31 70.64 34.93 0.75 0.05 13.10 0.00
YtU 129.15 119.15 219.08 71.15 35.89 0.71 -0.09 12.03 0.00
YCt 127.67 118.66 217.63 70.90 35.38 0.73 -0.02 12.54 0.00
YRt 1.68 1.25 9.02 0.05 1.64 1.60 2.94 112.55 0.00
Δln YCt -0.18 -0.26 10.91 -10.03 3.54 0.03 0.48 1.66 0.44
Δln YRt 0.02 0.10 3.10 -3.49 1.37 -0.08 -0.17 0.25 0.88

表3

区间价格指数的协整检验结果"

船类 变量 lag ADF P 结论 船类 变量 lag ADF P 结论
新造船 ln YtU 0 1.76 0.980 不平稳 二手船 lnYtU 0 -0.63 0.46 不平稳
1 0.77 0.865 不平稳 1 -0.48 0.51 不平稳
lnYtL 0 1.48 0.964 不平稳 lnYtL 0 -0.63 0.45 不平稳
1 1.05 0.921 不平稳 1 -0.41 0.53 不平稳
ΔlnYtU 0 -7.70 ≤0.01 平稳 Δln YtU 0 -6.85 ≤0.01 平稳
1 -5.30 ≤0.01 平稳 1 -4.34 ≤0.01 平稳
lnYtL 0 -11.78 ≤0.01 平稳 ln YtL 0 -6.63 ≤0.01 平稳
1 -6.53 ≤0.01 平稳 1 -4.63 ≤0.01 平稳
ut 0 -12.54 ≤0.01 平稳 ut 0 -8.99 ≤0.01 平稳
1 -8.53 ≤0.01 平稳 1 -6.39 ≤0.01 平稳

图4

FFA区间价格时间序列"

图5

FFA价格的中点序列(a)和极差序列(b)"

表4

新造船价格指数区间时序模型估计结果"

方程 变量ARECMECM-X
系数 P 系数 P 系数 P
中点方程 β0c 0.032 8 0.313 8 0.033 7 0.307 8 0.034 1 0.304 5
β1c 0.549 1*** 0.000 0 0.541 8*** 0.000 0 0.533 8*** 0.000 0
γc -0.194 0*** 0.013 4 -0.215 8*** 0.007 1
δ1c 0.649 8* 0.024 6
β0r -0.014 7 0.416 8 -0.014 9 0.413 4 -0.014 9 0.413 6
极差方程 β1r -0.510 6*** 0.000 0 -0.578 8*** 0.000 0 -0.578 8*** 0.000 0
γr -0.343 2*** 0.000 2 -0.343 1*** 0.000 1
δ1r -0.000 4 0.498 4

表5

二手船价格指数区间时序模型估计结果"

方程 变量ARECMECM-X
系数 P 系数 P 系数 P
中点方程 β0c -0.234 2 0.181 1 -0.217 5 0.198 7 -0.216 4 0.186 7
β1c 0.613 6*** 0.000 6 0.643 1*** 0.000 1 0.607 6*** 0.000 1
γc 0.128 6 0.132 2 0.159 1 0.073 2
δ1c 4.472 8*** 0.000 1
极差方程 β0r 0.028 9 0.405 2 0.032 3 0.386 9 0.032 8 0.385 6
β1r -0.461 4*** 0.000 1 -0.659 7*** 0.000 0 -0.660 3*** 0.000 0
γr -0.238 8*** 0.000 1 -0.238 9*** 0.000 1
δ1r 0.099 6 0.259 4

表6

新造干散货船不同模型预测结果比较"

评价指标训练集测试集
AR ECM ECM-X AR ECM ECM-X
MAEL 0.906 9 0.901 7 0.897 2 0.770 2 0.762 6 0.720 6
MAEU 0.831 1 0.810 0 0.802 7 0.909 9 1.164 2 1.157 6
RMSEL 1.701 8 1.694 5 1.666 8 0.981 1 0.948 0 0.939 7
RMSEU 1.360 3 1.317 6 1.303 5 1.303 7 1.554 1 1.541 0

表7

二手干散货船不同模型预测结果比较"

评价指标训练集测试集
AR ECM ECM-X AR ECM ECM-X
MAEL 2.343 6 2.120 1 2.165 8 2.896 4 2.800 2 2.766 6
MAEU 2.997 3 3.102 3 2.640 8 2.452 1 2.398 8 2.355 6
RMSEL 3.373 1 2.898 8 2.907 7 4.403 2 4.417 4 4.270 2
RMSEU 4.199 5 4.385 4 3.836 2 3.540 3 3.569 0 3.371 9
1 陈继红, 刘雯. 基于协整和VEC模型的VLCC新造船舶价格波动性[J]. 数学的实践与认识, 2016, 46 (24): 69- 78.
CHEN Jihong , LIU Wen . Fluctuation of the price of newbuilding VLCC ships based on cointegration and VEC model[J]. Mathematics in Practice and Theory, 2016, 46 (24): 69- 78.
2 HER M T , CHUNG C C . Ship price predictions of panamax second-hand bulk carriers using grey models[J]. Journal of Marine Science and Technology, 2019, 27 (3): 229- 234.
3 TGEODORE S , MICHAEL T . Support vector machine algorithms: an application to ship price forecasting[J]. Computational Economics, 2021, 57, 55- 87.
doi: 10.1007/s10614-020-10032-2
4 SYRIOPOULOS T , TSATSARONIS M , KARAMANOS I . Support vector machine algorithms: an application to ship price forecasting[J]. Computational Economics, 2021, 57, 55- 87.
doi: 10.1007/s10614-020-10032-2
5 GAO R , LIU J H , BAI X W , et al. Annual dilated convolution neural network for newbuilding ship prices forecasting[J]. Neural Computing and Applications, 2022, 34, 11853- 11863.
doi: 10.1007/s00521-022-07075-x
6 GAO R B , LIU J H , DU L , et al. Shipping market forecasting by forecast combination mechanism[J]. Maritime Policy and Management, 2022, 49 (8): 1059- 1074.
doi: 10.1080/03088839.2021.1945698
7 WANG X , ZHANG Z , LI S . Set-valued and interval-valued stationary time series[J]. Journal of Multivariate Analysis, 2016, 145, 208- 223.
doi: 10.1016/j.jmva.2015.12.010
8 SUN Y Y , HAN A , HONG Y M , et al. Threshold autoregressive models for interval valued time series data[J]. Journal of Econometrics, 2018, 206 (2): 414- 446.
doi: 10.1016/j.jeconom.2018.06.009
9 MOORE R E. Interval analysis[D]. Englewood Cliffs: Prentice-Hall, 1966.
10 LIMA N , DE CARVALHO F A . An exponential-type kernel robust regression model for interval-valued variables[J]. Information Sciences, 2018, 2018 (454/455): 419- 442.
11 BILLARD L, DIDAY E. Regression analysis for interval-valued data & data analysis, classification and related methods[C]//Proceedings of the Seventh Conference of the International Federation of Classification Societies. Belgium: Springer, 2000: 369-374.
12 BILLARD L , DIDAY E . From the statistics of data to the statistics of knowledge: symbolic data analysis[J]. Journal of the American Statistical Association, 2003, 98 (462): 470- 487.
doi: 10.1198/016214503000242
13 NETO L E A , CARVALHO F A T . Center and range method for fitting a linear regression model to symbolic interval data[J]. Computational Statistics and Data Analysis, 2008, 52 (3): 1500- 1515.
doi: 10.1016/j.csda.2007.04.014
14 NETO L E A , CARVALHO F A T . Constrained linear regression models for symbolic interval-valued variables[J]. Computational Statistics and Data Analysis, 2010, 54 (2): 333- 347.
doi: 10.1016/j.csda.2009.08.010
15 HAN A , HONG Y M , WANG S Y , et al. A vector autoregressive moving average model for interval-valued time series data[J]. Advances in Econometrics, 2016, 36, 417- 460.
16 YANG W , HAN A , WANG S Y . Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling[J]. Quantitative Finance, 2016, 16 (12): 1917- 1928.
doi: 10.1080/14697688.2016.1211795
17 杨威, 韩艾, 汪寿阳. 基于区间型数据的金融时间序列预测研究[J]. 系统工程学报, 2016, 31 (6): 817- 831.
YANG Wei , HAN Ai , WANG Shouyang . Research on financial time Series prediction based on interval data[J]. Journal of Systems Engineering, 2016, 31 (6): 817- 831.
18 陈炜, 徐慧琳, 汪寿阳, 等. 基于误差修正与分解的区间值股价时间序列预测研究[J]. 系统工程理论与实践, 2023, 43 (2): 383- 397.
CHEN Wei , XU Huilin , WANG Shouyang , et al. Error correction and decomposition method for forecast of interval-valued stock price time series[J]. Systems Engineering-Theory and Practice, 2023, 43 (2): 383- 397.
19 闵德权, 张鑫, 崔琪. 远期运费协议与新造船市场的波动溢出效应研究[J]. 中国水运, 2019, 19 (12): 37- 39.
MIN Dequan , ZHANG Xin , CUI Qi . A study on volatility spillover effects of forward freight agreements and new shipbuilding market[J]. China Water Transport, 2019, 19 (12): 37- 39.
20 杨芊, 林国龙, 丁一. FFA市场与二手船市场的波动溢出效应[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39 (5): 1001- 1004.
doi: 10.3963/j.issn.2095-3844.2015.05.022
YANG Qian , LIN Guolong , DING Yi . Volatility spillover effects between forward freight market and second-hand ship maket[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2015, 39 (5): 1001- 1004.
doi: 10.3963/j.issn.2095-3844.2015.05.022
21 陶志富, 刘金培, 朱家明, 等. 区间值时间序列预测效果测度研究[J]. 模糊系统与数学, 2018, 32 (4): 135- 144.
TAO Zhifu , LIU Jinpei , ZHU Jiaming , et al. Study on measurement of interval-value time series prediction effect[J]. Fuzzy Systems and Mathematics, 2018, 32 (4): 135- 144.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭乔进,丁轶,李宁. 一种基于上下文信息的乳腺肿块ROI检测方法[J]. J4, 2010, 45(7): 70 -75 .
[2] 付海艳,卢昌荆,史开泉 . (F,F-)-规律推理与规律挖掘[J]. J4, 2007, 42(7): 54 -57 .
[3] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[4] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[5] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .
[6] 张雯,张化祥*,李明方,计华. 决策树构建方法:向前两步优于一步[J]. J4, 2010, 45(7): 114 -118 .
[7] 宋 颖,张兴芳,王庆平 . 参数Kleene系统的α-反向三Ⅰ支持算法[J]. J4, 2007, 42(7): 45 -48 .
[8] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[9] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[10] 胡选子1, 谢存禧2. 基于人工免疫网络的机器人局部路径规划[J]. J4, 2010, 45(7): 122 -126 .