您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 109-113.doi: 10.6040/j.issn.1671-9352.0.2023.380

• • 上一篇    下一篇

整数群Z-部分作用的动力系统的回复性

成丹丹,王国涛   

  1. 山西师范大学数学与计算机科学学院, 山西 太原 030031
  • 发布日期:2024-12-12
  • 基金资助:
    国家自然科学基金资助项目(12201372);山西省自然科学基金资助项目(202203021212394)

Resilience of dynamical systems for the integer groups Z-partial actions

CHENG Dandan, WANG Guotao   

  1. School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
  • Published:2024-12-12

摘要: 对整数群Z-部分作用的动力系统,引入部分作用各种回复点的定义;同时研究其性质及其之间的关系;最后,给出2个整数群 Z-部分作用的动力系统在拓扑半共轭条件下各种回复点之间的关系。

关键词: 整数群Z-部分作用, 部分作用周期点, 部分作用ω极限点, 部分作用拓扑传递, 部分作用非游荡点

Abstract: Dynamical systems for integer groups Z-partial action, the notions of various partially recurrent points are introduced. Simultaneously, the relationship and properties of various partially recurrent points are studied. Finally, we investigate the relationship of various partially recurrent points of two semi-equivalent topological partial actions.

Key words: integer groups Z-partial action, partially periodic point, partially ω limit point set, partially topological transitive, partially non-wandering point

中图分类号: 

  • O192
[1] BARAVIERA A, GONCALVES D, ROYER D, et al. Topological entropy for partial actions of the group Z[EB/OL].(2015-09-20)[2023-04-09]. http://arxiv.org/abs/1509.0614v4.
[2] DOKUCHAEV M, EXEL R. Partial actions and subshifts[J]. Journal of Functional Analysis, 2017, 272(12):5038-5106.
[3] EXEL R. Circle Actions on C*-algebras, partial automorphisms and generalized pimsner voiculescu exect sequences[J]. Journal of Functional Analysis, 1994, 122(2):361-401.
[4] EXEL R, LACA M, QUIGG J. Partial dynamical systems and C*-algebras generated by partial isometries[J]. Journal of Operator Theory, 2002, 47(1):169-186.
[5] EXEL R. Partial dynamical systems, fell bundles and Applications[M]. Providence: American Mathematical Society, 2017.
[6] BARREIRA L. Ergodic theory, hyperbolic dynamics and dimension theory[M]. Heidelberg: Springer, 2012.
[7] CHENG D, LI Z. Mean dimensions for partial actions[J]. Journal of Difference Equations and Applications, 2020, 26(4): 561-573.
[8] CARVALHO M, RODRIGUES F B, VARANDAS P. Semigroup actions of expanding maps [J]. Journal of Statistical Physics, 2017, 166(1):114-136.
[9] DOKUCHAEV M. Partial actions: a survey[M] //DOKUCHAEV M. Groups, Algebras and Applications. Providence: American Mathematical Society, 2011:173-184.
[10] DOKUCHAEV M. Recent development around partial actions [J].São Paulo Journal of Mathematical Sciences, 2019, 13(1):195-247.
[11] LI T, YORKE Y. Period three implies chaos [J]. American Mathematical Monthly, 1975, 82:985-992.
[12] GU R, SUN T, ZHENG T. Non-wandering set of a continuous graph map [J]. Applied Mathematics, 2003, 18:477-481.
[13] HUANG W, YE X. Non-wandering sets of the powers of maps of a tree [J]. Science in China(Series A), 2001, 44:31-39.
[14] MAKHROVA E N, VANIUKOVA K S. On the set of non-wandering points of monotone maps on local dendrites [J]. Journal of Physics, 2016, 692:012012.
[15] MAI J, SHAO S. Spaces of ω-limit sets of graph maps[J]. Fundamenta Mathematicae, 2007, 196:91-100.
[16] MAI J, SUN T. The ω-limit set of a graph map[J]. Topology and Its Applications, 2007, 154:2306-2311.
[17] AKIN E C, JEFFREY D. Conceptions of topological transitivity[J]. Topology and Its Applications, 2012, 159(12):2815-2830.
[18] SALMAN M, DAS R. Multi-transitivity in non-autonomous discrete systems[J].Topology and Its Applications, 2020, 278:107237.
[19] YAN K, LIU Q, ZENG F. Classification of transitive group actions[J]. Discrete and Continuous Dynamical Systems. 2021, 41(12):5579-5607.
[20] 叶向东,黄文,邵松. 拓扑动力系统概论[M]. 北京:科学出版社, 2008:3-25. YE Xiandong, HUANG Wen, SHAO Song. Introduction to topological dynamical systems[M]. Beijing: Science Press, 2008:3-25.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王雪梅,陈兴蜀,王海舟,王文贤. 基于标签和分块特征的新闻网页关键信息自动抽取[J]. 《山东大学学报(理学版)》, 2019, 54(3): 67 -74 .
[2] 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25 -31 .
[3] 阎召祥. ZS加密方案的选密安全性证明[J]. J4, 2010, 45(11): 115 -121 .
[4] 李春龙1,2,李小爽1,徐霞1*. 冷冻干燥过程中体系pH模拟与可视化测量[J]. J4, 2013, 48(05): 39 -42 .
[5] 马效培,孙同军. 多孔介质中不可压缩混溶驱动问题的一类特征积分平均非重叠型区域分解方法[J]. J4, 2012, 47(6): 49 -56 .
[6] 唐光远,郭军军,余正涛,张亚飞,高盛祥. 基于BERT与法条知识驱动的法条推荐方法[J]. 《山东大学学报(理学版)》, 2021, 56(11): 24 -30 .
[7] 刘梦迪,张贤勇,莫智文. 基于改进距离测度的概率犹豫模糊多属性群决策新方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 118 -126 .
[8] 杜聪聪,赵晶,初红军,刘元超,端肖楠,陈刚. 新疆河狸mtDNA D-loop HV-Ⅰ区的遗传多样性研究[J]. 山东大学学报(理学版), 2016, 51(3): 19 -28 .
[9] 王文康. 三角范畴中的投射分解[J]. 山东大学学报(理学版), 2015, 50(12): 114 -120 .
[10] 房莹,郑慧慧,张良云. 修改的Rota-Baxter 配对模与修改的Rota-Baxter配对余模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 93 -104 .