《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 80-90.doi: 10.6040/j.issn.1671-9352.0.2022.404
摘要:
研究单位区间图上的半配对多对多k-不相交路覆盖(k-disjoint path cover, k-DPC)的容错性问题, 利用路覆盖的结构特点, 结合单位区间图顶点序的结构性质, 刻画具有半配对1-DPC和k-DPC性质的单位区间图。同时得到单位区间图G任意删去点集W且任意经过边集F的相关结果: G-W且经过F具有半配对1-DPC性质当且仅当G是(2+r)-连通, 其中|W|=p, |F|=q, p+q≤r; G-W且经过F具有半配对k-DPC性质当且仅当G是(2k+r-1)-连通, 其中k≥2。结果表明: 图中不相交路覆盖的存在与顶点连通度和哈密顿性质密切相关。研究方法与结果为进一步研究区间图及其他相关图类的路覆盖问题提供理论依据。
中图分类号:
1 |
WANG Fan , ZHAO Weisheng . One-to-one disjoint path covers in hypercubes with faulty edges[J]. The Journal of Supercomputing, 2019, 75 (8): 5583- 5595.
doi: 10.1007/s11227-019-02817-6 |
2 |
DUSART J , CORNEIL D G , HABIB M . Corrigendum: LDFS-based certifying algorithm for the minimum path cover problem on cocomparability graphs[J]. SIAM Journal on Computing, 2021, 50 (3): 1148- 1153.
doi: 10.1137/20M1327835 |
3 |
PARK J H , CHOI J , LIM H S . Algorithms for finding disjoint path covers in unit interval graphs[J]. Discrete Applied Mathematics, 2016, 205, 132- 149.
doi: 10.1016/j.dam.2015.12.002 |
4 |
CHEN Xiaodong , LIU Mingda , LIU Huiqing . Minimum path cover in quasi-claw-free graphs[J]. Bulletin of the Iranian Mathematical Society, 2020, 46 (3): 815- 820.
doi: 10.1007/s41980-019-00294-4 |
5 |
YU Wei , LIU Zhaohui . Better approximability results for min-max tree/cycle/path cover problems[J]. Journal of Combinatorial Optimization, 2019, 37 (2): 563- 578.
doi: 10.1007/s10878-018-0268-8 |
6 |
GURSKI F , KOMANDER D , REHS C , et al. Computing directed Steiner path covers[J]. Journal of Combinatorial Optimization, 2022, 43 (2): 402- 431.
doi: 10.1007/s10878-021-00781-7 |
7 |
LI Jing , WANG Guoren , CHEN Lichao . Paired 2-disjoint path covers of multi-dimensional torus networks with 2n-3 faulty edges[J]. Theoretical Computer Science, 2017, 677, 1- 11.
doi: 10.1016/j.tcs.2017.03.008 |
8 |
LI J , MELEKIAN C , ZUO S R , et al. Unpaired many-to-many disjoint path covers on bipartite k-ary n-cube networks with faulty elements[J]. International Journal of Foundations of Computer Science, 2020, 31 (3): 371- 383.
doi: 10.1142/S0129054120500148 |
9 |
PARK J H . Paired many-to-many 3-disjoint path covers in bipartite toroidal grids[J]. Journal of Computing Science and Engineering, 2018, 12 (3): 115- 126.
doi: 10.5626/JCSE.2018.12.3.115 |
10 | PARK J H , IHM I . A linear-time algorithm for finding a one-to-many 3-disjoint path cover in the cube of a connected graph[J]. Information Processing Letters, 2019, 142 (2): 57- 63. |
11 |
ĆUSTIĆ A , LENDL S . The Steiner cycle and path cover problem on interval graphs[J]. Journal of Combinatorial Optimization, 2022, 43 (1): 226- 234.
doi: 10.1007/s10878-021-00757-7 |
12 |
CHEN Yong , CAI Yinhui , LIU Longcheng , et al. Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph[J]. Journal of Combinatorial Optimization, 2022, 43 (3): 571- 588.
doi: 10.1007/s10878-021-00793-3 |
13 |
KAVRA R , GUPTA A , KANSAL S . Interval graph based energy efficient routing scheme for a connected topology in wireless sensor networks[J]. Wireless Networks, 2021, 27 (8): 5085- 5104.
doi: 10.1007/s11276-021-02782-0 |
14 |
PATEL Y S , BAHETI A , MISRA R . Interval graph multi-coloring-based resource reservation for energy-efficient containerized cloud data centers[J]. The Journal of Supercomputing, 2021, 77 (5): 4484- 4532.
doi: 10.1007/s11227-020-03439-z |
15 |
AVANI V S , SHAILA S G , VADIVEL A . Interval graph of facial regions with common intersection salient points for identifying and classifying facial expression[J]. Multimedia Tools and Applications, 2021, 80 (3): 3367- 3390.
doi: 10.1007/s11042-020-09806-5 |
16 |
LI Xingfu , FENG Haodi , JIANG Haotao , et al. Solving the maximum internal spanning tree problem on interval graphs in polynomial time[J]. Theoretical Computer Science, 2018, 734, 32- 37.
doi: 10.1016/j.tcs.2017.09.017 |
17 | PRADHAN D , PAL S . An O(n+m) time algorithm for computing a minimum semitotal dominating set in an interval graph[J]. Journal of Applied Mathematics and Computing, 2021, 66 (1): 733- 747. |
18 |
KRATOCHVÍL J , MAS$\mathop {\rm{R}}\limits^{\smile}$ÍK T , NOVOTNÁ J . U-bubble model for mixed unit interval graphs and its applications: the maxcut problem revisited[J]. Algorithmica, 2021, 83 (12): 3649- 3680.
doi: 10.1007/s00453-021-00837-4 |
19 |
PARK J H , KIM J H , LIM H S . Disjoint path covers joining prescribed source and sink sets in interval graphs[J]. Theoretical Computer Science, 2019, 776, 125- 137.
doi: 10.1016/j.tcs.2019.01.019 |
20 |
PARK J H , LIM H S . Characterization of interval graphs that are unpaired 2-disjoint path coverable[J]. Theoretical Computer Science, 2020, 821, 71- 86.
doi: 10.1016/j.tcs.2020.03.010 |
21 |
PARK J H . A sufficient condition for the unpaired k-disjoint path coverability of interval graphs[J]. The Journal of Supercomputing, 2021, 77 (7): 6871- 6888.
doi: 10.1007/s11227-020-03512-7 |
22 |
LI Peng , WU Yaokun . A linear time algorithm for the 1-fixed-endpoint path cover problem on interval graphs[J]. SIAM Journal on Discrete Mathematics, 2017, 31 (1): 210- 239.
doi: 10.1137/140981265 |
23 | LOOGES P J , OLARIU S . Optimal greedy algorithms for indifference graphs[J]. Computers & Mathematics with Applications, 1993, 25 (7): 15- 25. |
24 | CHEN C , CHANG C C , CHANG G J . Proper interval graphs and the guard problem[J]. Discrete Mathematics, 1997, 170 (1/2/3): 223- 230. |
[1] | 袁军霞1,2,周厚春1*,许娟1. Macula分离矩阵的推广[J]. J4, 2012, 47(4): 97-100. |
[2] | 韩娜1,2,李慧娟1,2,刁科凤1*. 一类基于完全图K2m上匹配的相交关系的池设计[J]. J4, 2012, 47(12): 53-56. |
[3] | 雒金梅,左连翠*. 关于图的L(2,1)-标号的岛序列[J]. J4, 2011, 46(6): 49-52. |
|