您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (1): 120-126.doi: 10.6040/j.issn.1671-9352.4.2023.0356

• • 上一篇    

q-阶正交模糊自对偶聚合算子及其应用

杜文胜   

  1. 郑州大学商学院, 河南 郑州 450001
  • 发布日期:2025-01-10
  • 作者简介:杜文胜(1987— ),男,副教授,博士生导师,博士,研究方向为决策理论与决策分析. E-mail: wsdu@zzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12271493);河南省自然科学基金资助项目(242300421154);河南省高等学校青年骨干教师培养计划项目(2024GGJS001);郑州大学青年人才创新团队支持计划项目(35240264)

q-rung orthopair fuzzy self-dual aggregation operator and its application

DU Wensheng   

  1. School of Business, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Published:2025-01-10

摘要: 针对q-阶正交模糊多属性决策问题,给出基于q-阶正交模糊自对偶聚合算子的信息融合方法以及应用。讨论q-阶正交模糊自对偶聚合算子的幂等性、单调性、有界性。研究了该算子的极限情形,并利用加权幂平均函数的单调性给出该算子更为精确的边界刻画。提出q-阶正交模糊环境下基于该聚合算子的多属性决策方法,通过体育赛事举办地的选取说明该方法的可行性与有效性。通过不同的参数取值对排序结果的影响并与其他聚合算子进行比较,说明本研究方法的稳定性及计算简便的优点。

关键词: q-阶正交模糊集, 自对偶聚合算子, 多属性决策

Abstract: To handle q-rung orthopair fuzzy multi-attribute decision making problems, an information fusion method is proposed based on the q-rung orthopair fuzzy self-dual aggregation operator, which is induced by the weighted power mean operator with its power being rung q. Some regular properties of this q-rung orthopair fuzzy aggregation operator are investigated, such as the idempotency, monotonicity and boundedness. The limiting case of this operator is examined as q approaches infinity, and the boundedness is precisely characterized by the monotonicity of weighted power means. The aggregation operator based approach is developed to deal with multi-attribute decision making problems under q-rung orthopair fuzzy environment. An illustrative example related to the venue selection for sporting events is proposed to show the effectiveness and feasibility of this approach. The influence of the parameter therein on the ranking results is discussed to demonstrate the robustness, and comparisons with some existing methods are presented, which implies the current method can maintain the final results with a simpler calculation.

Key words: q-rung orthopair fuzzy set, self-dual aggregation operator, multi-attribute decision making

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] YAGER R R, ABBASOV A M. Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28(5):436-452.
[4] YAGER R R. Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5):1222-1230.
[5] 任睿,张超,庞继芳. 有限理性下多粒度q-RO模糊粗糙集的最优粒度选择及其在并购对象选择中的应用[J]. 南京大学学报(自然科学版), 2020, 56(4):452-460. REN Rui, ZHANG Chao, PANG Jifang. Optimal granularity selections of multigranulation q-RO fuzzy rough sets under bounded rationality and their applications in merger and acquisition target selections[J]. Journal of Nanjing University(Natural Science), 2020, 56(4):452-460.
[6] 周延年,徐彤,胡滨. 属性相关条件下广义q-ROF TODIM决策方法[J]. 西北工业大学学报,2020, 38(5):1068-1073. ZHOU Yannian, XU Tong, HU Bin. Generalized q-ROF TODIM decision-making method considering attribute correlation[J]. Journal of Northwestern Polytechnical University, 2020, 38(5):1068-1073.
[7] 王军,张润彤,朱晓敏. 广义正交模糊Maclaurin对称平均算子及其应用[J]. 计算机科学与探索, 2019, 13(8):1411-1421. WANG Jun, ZHANG Runtong, ZHU Xiaomin. Generalized orthopair fuzzy Maclaurin symmetric mean operators and their application[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8):1411-1421.
[8] 陈艳如,王润玮,林志超,等. 基于区间Orthopair模糊Heronian测度的多属性群决策方法[J]. 武汉理工大学学报(信息与管理工程版), 2020, 42(4):319-325. CHEN Yanru, WANG Runwei, LIN Zhichao, et al. Multiple attribute group decision making based on interval-valued orthopair fuzzy Heronian measure[J]. Journal of WUT(Information & Management Engineering), 2020, 42(4):319-325.
[9] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 山东大学学报(理学版), 2021, 56(1):35-42. DU Wensheng, XU Tao. Generalized orthopair fuzzy hybrid aggregation operator and its application to multiple attribute decision making[J]. Journal of Shandong University(Natural Science), 2021, 56(1):35-42.
[10] 杜玉琴,孙超,崔建新. q-阶正交区间模糊Einstein集成算子及其应用[J].复旦大学学报(自然科学版), 2022, 61(1):17-26. DU Yuqin, SUN Chao, CUI Jianxin. q-rung orthopair interval fuzzy Einstein aggregation operators and their application[J]. Journal of Fudan University(Natural Science), 2022, 61(1):17-26.
[11] LIU Peide, WANG Peng. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33(2):259-280.
[12] WEI Guiwu, GAO Hui, WEI Yu. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making[J]. International Journal of Intelligent System, 2018, 33(7):1426-1458.
[13] LIU Peide, LIU Junlin. Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision making[J]. International Journal of Intelligent Systems, 2018, 33(2):315-347.
[14] LIU Peide, WANG Peng. Multiple-attribute decision making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(5):834-848.
[15] PENG Xindong, YANG Yong. Some results for Pythagorean fuzzy sets[J]. International Journal of Intelligent Systems. 2015, 30(11):1133-1160.
[16] PENG Xindong, YUAN Huiyong, Fundamental properties of Pythagorean fuzzy aggregation operators[J]. Fundamenta Informaticae, 2016, 147(4):415-446.
[17] BELIAKOV G, BUSTINCE H, CALVO T. A practical guide to averaging functions[M]. Heidelberg:Springer, 2016.
[18] BULLEN P S. Handbook of means and their inequalities[M]. Dordrecht: Kluwer Academic Publishers, 2003.
[19] NGUYEN H. Some new operations on Atanassovs intuitionistic fuzzy sets in decision-making problems[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(1):639-651.
[20] DARKO A P, LIANG D C. Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method[J]. Engineering Applications of Artificial Intelligence, 2020, 87:103259.
[1] 吴维,张贤勇,杨霁琳. 广义区间值q阶orthopair犹豫模糊软集及其多属性决策[J]. 《山东大学学报(理学版)》, 2025, 60(1): 101-110.
[2] 周宇,周礼刚,林志超,徐鑫. 概率q阶犹豫模糊TODIM方法及其应用[J]. 《山东大学学报(理学版)》, 2023, 58(6): 9-17.
[3] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[4] 黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟. 区间值q阶犹豫模糊Frank集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2021, 56(3): 54-66.
[5] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42.
[6] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[7] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
[8] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[9] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!