《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 117-126.doi: 10.6040/j.issn.1671-9352.0.2025.167
• • 上一篇
刘欣怡1,李洁龄1,王安河1,李琦1,白硕1,2*
LIU Xinyi1, LI Jieling1, WANG Anhe1, LI Qi1, BAI Shuo1,2*
摘要: 癌症是威胁人类健康的重大疾病,传统肿瘤研究模型如细胞系、动物模型等存在显著局限性,开发新型研究模型成为迫切需求。肿瘤类器官技术可精准模拟肿瘤特征,但依赖成分复杂的Matrigel基质胶,模型稳定性和可重复性差。肽自组装水凝胶因生物相容性好、组分明确、可模拟天然胞外基质微结构等优势,成为Matrigel理想的替代材料。但其机械性能和生物稳定性较弱,难以满足类器官长期培养的需求。本工作创新性地将丝素蛋白引入肽自组装水凝胶体系以优化其性能,从而满足类器官培养对基质性能的要求:丝素蛋白掺杂可增强短肽分子间相互作用,提升水凝胶力学强度和生物稳定性,且不破坏其仿生的纳米纤维微结构。以该水凝胶培养胶质瘤类器官,一周内即可形成百微米级的类器官,并且类器官内细胞存活率高达90%。本研究为解决传统肿瘤类器官培养的基质材料问题提供了新方案,有望提升肿瘤类器官培养质量和稳定性,为肿瘤研究和精准医疗提供更可靠模型。
中图分类号:
[1] MACDONALD W J, PURCELL C, PINHO-SCHWERMANN M, et al. Heterogeneity in cancer[J]. Cancers, 2025, 17(3):441. [2] YAMAGUCHI M. Extracellular regucalcin: a potent suppressor in the cancer cell microenvironment[J]. Cancers, 2025, 17(2):240. [3] GROZINSKY-GLASBERG S, SHIMON I, RUBINFELD H. The role of cell lines in the study of neuroendocrine tumors[J]. Neuroendocrinology, 2012, 96(3):173-187. [4] VINCENT K M, POSTOVIT L M. Investigating the utility of human melanoma cell lines as tumour models[J]. Oncotarget, 2017, 8(6):10498-10509. [5] TOYOHARA J, ISHIWATA K. Animal tumor models for PET in drug development[J]. Annals of Nuclear Medicine, 2011, 25(10):717-731. [6] BABU V, PAUL N, YU R. Animal models and cell lines of pancreatic neuroendocrine tumors[J]. Pancreas, 2013, 42(6):912-923. [7] LI Z T, ZHENG W B, WANG H J, et al. Application of animal models in cancer research: recent progress and future prospects[J]. Cancer Management and Research, 2021, 13:2455-2475. [8] PU F F, GUO H Y, SHI D Y, et al. The generation and use of animal models of osteosarcoma in cancer research[J]. Genes & Diseases, 2024, 11(2):664-674. [9] YANG L, YANG S, LI X Y, et al. Tumor organoids: from inception to future in cancer research[J]. Cancer Letters, 2019, 454:120-133. [10] LV J J, DU X, WANG M M, et al. Construction of tumor organoids and their application to cancer research and therapy[J]. Theranostics, 2024, 14(3):1101-1125. [11] MAO Y N, HU H L. Establishment of advanced tumor organoids with emerging innovative technologies[J]. Cancer Letters, 2024, 598:217122. [12] RASSOMAKHINA N V, RYAZANOVA A Y, LIKHOV A R, et al. Tumor organoids: the era of personalized medicine[J]. Biochemistry(Moscow), 2024, 89(1):S127-S147. [13] BIAN S, REPIC M, GUO Z M, et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nature Methods, 2018, 15(8):631-639. [14] DOMINIJANNI A, DEVARASETTY M, SOKER S. Manipulating the tumor microenvironment in tumor organoids induces phenotypic changes and chemoresistance[J]. iScience, 2020, 23(12):101851. [15] BROGUIERE N, ISENMANN L, HIRT C, et al. Growth of epithelial organoids in a defined hydrogel[J]. Advanced Materials, 2018, 30(43):1801621. [16] SHI W, MIRZA S, KUSS M, et al. Embedded bioprinting of breast tumor cells and organoids using low-concentration collagen-based bioinks[J]. Advanced Healthcare Materials, 2023, 12(26):2300905. [17] XU Z Y, HUANG J J, LIU Y, et al. Extracellular matrix bioink boosts stemness and facilitates transplantation of intestinal organoids as a biosafe Matrigel alternative[J]. Bioengineering & Translational Medicine, 2023, 8(1):e10327. [18] YAN X H, ZHU P L, LI J B. Self-assembly and application of diphenylalanine-based nanostructures[J]. Chemical Society Reviews, 2010, 39(6):1877-1890. [19] ALTUNBAS A, POCHAN D J. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering[J]. Topics in Current Chemistry, 2012, 310:135-167. [20] LI J L, XING R R, BAI S, et al. Recent advances of self-assembling peptide-based hydrogels for biomedical applications[J]. Soft Matter, 2019, 15(8):1704-1715. [21] XU H Y, FENG J, DAI N, et al. Self-assembling peptide hydrogel scaffold integrating stem cell-derived exosomes for infected bone defects[J]. Journal of Biomaterials Science, Polymer Edition, 2024, 35(10):1511-1522. [22] YANG P X, YAO X M, TIAN X, et al. Supramolecular peptide hydrogel epitope vaccine functionalized with CAR-T cells for the treatment of solid tumors[J]. Materials Today Bio, 2025, 31:101517. [23] DING L Q, LIU X Y, SUN R Y, et al. Silk fibroin-enhanced peptide self-assembled biomimetic hydrogel for 3D cell proliferation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 720:137123. [24] LI J L, XUE Y, WANG A H, et al. Polyaniline functionalized peptide self-assembled conductive hydrogel for 3D cell culture[J]. Gels, 2022, 8(6):372. [25] JIAN H L, LI X, DONG Q Q, et al. In vitro construction of liver organoids with biomimetic lobule structure by a multicellular 3D bioprinting strategy[J]. Cell Proliferation, 2023, 56(5):e13465. [26] LI X, JIAN H L, HAN Q Q, et al. Three-dimensional(3D)bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect[J]. Journal of Colloid and Interface Science, 2023, 639:1-6. [27] SHUAI Y J, ZHENG M D, KUNDU S C, et al. Bioengineered silk protein-based 3D in vitro models for tissue engineering and drug development: from silk matrix properties to biomedical applications[J]. Advanced Healthcare Materials, 2024, 13(28):2401458. [28] SHEN C Y, ZHOU Z Y, LI R Y, et al. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment[J]. Theranostics, 2025, 15(2):560-584. [29] YAO X, ZOU S Z, FAN S N et al. Bioinspired silk fibroin materials: from silk building blocks extraction and reconstruction to advanced biomedical applications[J]. Materials Today Bio, 2022, 16:100381 [30] ZOU S Z, YAO X, SHAO H L, et al. Nonmulberry silk fibroin-based biomaterials: impact on cell behavior regulation and tissue regeneration[J]. Acta Biomaterialia, 2022, 153:68-84. [31] WANG L L, CHEN Z J, YAN Y F, et al. Fabrication of injectable hydrogels from silk fibroin and angiogenic peptides for vascular growth and tissue regeneration[J]. Chemical Engineering Journal, 2021, 418:129308. [32] KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018, 9:1620. |
[1] | 袁清献,高丽兰,李瑞欣,刘迎节,林祥龙,张西正. 3D打印丝素蛋白-Ⅱ型胶原软骨支架[J]. 山东大学学报(理学版), 2018, 53(3): 82-87. |
[2] | 秦晓怡,高丽兰,张慧,张春秋,葛洪玉,刘志动. 不同压缩速率下关节软骨力学性能的有限元模拟[J]. 山东大学学报(理学版), 2016, 51(3): 34-39. |
|