您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 95-100.doi: 10.6040/j.issn.1671-9352.0.2023.476

• • 上一篇    

Morita环上的强Gorenstein投射模

夏旭,陈文静*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-11-11
  • 通讯作者: 陈文静(1989— ),女,副教授,博士,研究方向为环的同调理论. E-mail:chenwj@nwnu.edu.cn
  • 作者简介:夏旭(1999— ),女,硕士研究生,研究方向为环的同调理论. E-mail:xiax77@163.com
  • 基金资助:
    国家自然科学基金资助项目(11901463,12361007);甘肃省青年科技基金计划项目(20JR5RA517)

Strongly Gorenstein projective modules over Morita rings

XIA Xu, CHEN Wenjing*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-11-11

摘要: 设Λψ=(A NM B)(0,ψ)是有一个双模同态为零的Morita环,其中A,B都是诺特环,N是A-B-双模,M是B-A-双模,且ψ:NBM→A是A-A-双模同态,给出了Λψ-模是强Gorenstein投射模的充分条件。

关键词: Morita环, 强Gorenstein投射模, 强完全投射分解, 弱可相容模

Abstract: Let Λψ=(A NM B)(0,ψ) be a Morita ring with one bimodule homomorphism zero, where A and B are noetherian rings, N is an A-B-bimodule, M is a B-A-bimodule, and ψ:NBM→A is a homomorphism of A-A-bimodules. We give the sufficient condition that a Λψ-module is a strongly Gorenstein projective module.

Key words: Morita ring, strongly Gorenstein projective module, strongly complete projective resolution, weakly compatible module

中图分类号: 

  • O153.3
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence: American Mathematical Society, 1969:94.
[2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633.
[3] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter De Gruyter, 2000.
[4] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/3):167-193.
[5] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective, and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(2):437-445.
[6] BASS H. The Morita theorems, mimeographed notes[M]. Oregon: University of Oregon, 1962.
[7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138.
[8] GAO Nan, PSAROUDAKIS C. Gorenstein homological aspects of monomorphism categories via Morita rings[J]. Algebras and Representation Theory, 2017, 20(2):487-529.
[9] GUO Qianqian, XI Changchang. Gorenstein projective modules over rings of Morita contexts[J]. Science China Mathematics, 2023, 66, https://doi.org/10.1007/s11425-022-2206-8.
[10] GREEN E L, PSAROUDAKIS C. On Artin algebras arising from Morita contexts[J]. Algebras and Representation Theory, 2014, 17(5):1485-1525.
[1] 陈文静,高文. Morita环上的Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2024, 59(4): 9-15.
[2] 谭进,狄振兴. Morita环上的强Ding投射模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!