您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 87-94.doi: 10.6040/j.issn.1671-9352.0.2023.486

• • 上一篇    

对称群S3表示环的广义逆

曹刘峰1,2,魏俊潮2,胡佳伟2*   

  1. 1.盐城工学院数理学院, 江苏 盐城 224001;2.扬州大学数学学院, 江苏 扬州 225002
  • 发布日期:2025-11-11
  • 通讯作者: 胡佳伟(1990— ),男,讲师,博士,研究方向为Hopf代数偏作用. E-mail:ohujiaweio@163.com
  • 作者简介:曹刘峰(1995— ),男,讲师,博士,研究方向为Hopf代数与广义逆. E-mail:1204719495@qq.com
  • 基金资助:
    国家自然科学基金资助项目(12371041);江苏省青年基金资助项目(BK20210783);盐城工学院高层次人才科研启动项目(xjr2025009)

Generalized inverses in the representation ring of symmetric group S3

CAO Liufeng1,2, WEI Junchao2, HU Jiawei2*   

  1. 1. Department of Mathematics, Yancheng Institute of Technology, Yancheng 224001, Jiangsu, China;
    2. School of Mathematics, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2025-11-11

摘要: 利用Frobenius-Perron维数计算6阶对称群S3表示环r(S3)的正则元,刻画r(S3)的可逆元、MP-逆元、群逆元、EP元和SEP元。

关键词: 表示环, 广义逆, Frobenius-Perron维数, 融合环, 对称群

Abstract: By using Frobenius-Perron dimension, all regular elements in the representation ring r(S3) of the symmetric group S3 of order 6 are determined, and all invertible elements, MP-inverses, group invertible elements, EP and SEP elements in r(S3) are described.

Key words: representation ring, generalized inverse, Frobenius-Perron dimension, fusion ring, symmetric group

中图分类号: 

  • O153.3
[1] CAO Liufeng, YOU Lan, WEI Junchao. EP elements of Z[x] /(x2+x)[J]. Filomat, 2023, 37(22):7467-7478.
[2] MOSIC D. Generalized inverses[M]. Niš: University of Niš, 2018.
[3] MOSIC D, DJORDJEVIC D S. Moore-Penrose-invertible normal and Hermitian elements in rings[J]. Linear Algebra and Its Applications, 2009, 431:732-745.
[4] MOSIC D, DJORDJEVIC D S. New characterizations of EP, generalized normal and generalized Hermitian elements in rings[J]. Applied Mathematics and Computation, 2012, 218(12):6702-6710.
[5] SHI Liyan, WEI Junchao. Some new characterizations of normal elements[J]. Filomat, 2019, 33(13):4115-4120.
[6] XU Zhicheng, TANG Ruijun, WEI Junchao. Strongly EP elements in a ring with involution[J]. Filomat, 2020, 34(6):2101-2107.
[7] ZHAO Danan, WEI Junchao. Some new characterizations of partial isometries in rings with involution[J]. International Electronic Jouranl of Algebra, 2021, 30:304-311.
[8] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor categories[M]. Providence: AMS, 2015.
[9] 曹刘峰,周芯雨,李立斌. CMS融合代数的不可约表示[J]. 数学的实践与认识,2020,50(24):189-195. CAO Liufeng, ZHOU Xinyu, LI Libin. The irreducible representations of CMS fusion ring[J]. Mathematics in Practice and Theory, 2020, 50(24):189-195.
[10] 曹刘峰. 二面体群 Grothendieck代数的Maschke定理[J]. 山东大学学报(理学版),2023,58(2):44-50. CAO Liufeng. The Maschke theorem for the Grothendieck algebra of dihedral group[J]. Journal of Shandong University(Natural Science), 2023, 58(2):44-50.
[11] CAO Liufeng, CHEN Huixiang. Special modules for R(PSL(2,q))[J]. Czechoslovak Mathematical Journal, 2023, 73(4):1301-1317.
[12] GREEN J A. The modular representation algebra of a finite group[J]. Illinois Journal of Mathematics, 1962, 6(4):607-619.
[13] 曹刘峰,周灵睿,李立斌. 二面体群D5上的表示环[J]. 扬州大学学报(自然科学版),2020,23(6):13-17. CAO Liufeng, ZHOU Lingrui, LI Libin. The representation ring of dihedral group D5[J]. Journal of Yangzhou University(Natural Science Edition), 2020, 23(6):13-17.
[14] CAO Liufeng, CHEN Huixiang, LI Libin. The cell modules of the Green algebra of Drinfeld quantum double D(H4)[J]. Acta Mathematic Sinica(English Series), 2022, 6(38):1116-1132.
[15] CAO Liufeng, CHEN Huixiang, LI Libin. McKay matrix for indecomposable module of finite representation type Hopf algebra[J]. Communications in Algebra, 2022, 50(10):4560-4576.
[16] CAO Liufeng, SU Dong, YAO Hua. Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra[J]. Czechoslovak Mathematical Journal, 2023, 73(148):101-115.
[17] CAO Liufeng, XIA Xuejun, LI Libin. McKay matrices for pointed rank one Hopf algebras of nilpotent type[J]. Algebra Colloquium, 2023, 30(3):467-480.
[18] CAO Liufeng. Representations over Green algebras of weak Hopf algebras based on Taft algebras[J]. Bulletin of The Korean Mathematical Society, 2023, 60(6):1687-1695.
[1] 代丽芳,梁茂林,冉延平. 一类张量特征值反问题的可解性条件[J]. 《山东大学学报(理学版)》, 2021, 56(6): 95-102.
[2] 雷林,李笑丽,何承源. r-H-循环矩阵的性质及其逆的多项式算法[J]. 《山东大学学报(理学版)》, 2021, 56(4): 102-110.
[3] 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57.
[4] 袁月,赵平. 半群H *(n,m)(r)的极大子半群与极大正则子半群[J]. 《山东大学学报(理学版)》, 2020, 55(12): 19-24.
[5] 罗高骏, 左可正, 周良. Core逆的一些新特征[J]. 山东大学学报(理学版), 2015, 50(04): 90-94.
[6] 汤积华,陈保会. 内逆P-信息智能融合与属性析取扩展关系[J]. 山东大学学报(理学版), 2014, 49(2): 89-92.
[7] 郑禅, 李寒宇. 半定内积下的矩阵奇异值分解[J]. 山东大学学报(理学版), 2014, 49(12): 81-86.
[8] 刘妮. Hilbert空间上算子的(P,Q)外广义逆[J]. 山东大学学报(理学版), 2014, 49(05): 90-94.
[9] 李静,何承源. 求解首尾差循环矩阵逆与广义逆的快速算法[J]. J4, 2013, 48(6): 96-99.
[10] 段樱桃. 两个算子乘积的{1,3,4}逆序律[J]. J4, 2012, 47(4): 53-56.
[11] 张凤霞1,李莹1,2,赵建立1. 两个矩阵乘积的{1,2,3}-逆和{1,2,4}-逆的反序律[J]. J4, 2011, 46(4): 78-81.
[12] 朱光艳1, 刘晓冀2 *. 矩阵的加M权右对称因子[J]. J4, 2011, 46(2): 114-116.
[13] 袁玩贵,孔祥智. 环上矩阵的加权Moore-Penrose逆[J]. J4, 2011, 46(12): 55-59.
[14] 钟金, 刘晓冀*. Hilbert空间上算子的Sharp序[J]. J4, 2010, 45(4): 82-85.
[15] 霍玉洪. 求解矩阵方程A1XB1+A2XTB2=E的一般解[J]. J4, 2009, 44(12): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!