《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 41-50.doi: 10.6040/j.issn.1671-9352.0.2023.303
• • 上一篇
吴弦禧,黄丹君
WU Xianxi, HUANG Danjun
摘要: 图G的均匀k-染色是图G的一个正常k-点染色且满足任意2个色类的顶点数之差的绝对值至多为1。若G存在一个均匀k-染色,则称G是均匀k-可染的。图G的最大平均度是图G的所有非空子图的平均度的最大值,用mad(G)表示。本文运用权转移的方法证明mad(G)≤(13)/4的图是均匀k-可染的,其中k≥max{Δ(G),6},且Δ(G)是图G的最大度。
中图分类号:
[1] MEYER W. Equitable coloring[J]. The American Mathematical Monthly, 1973, 80(8):920-922. [2] ERDÖS P. Theory of graphs and its applications[M]. Prague: Czechoslovak Academy of Sciences, 1964:159. [3] HAJNAL A, SZEMERÉDI E. Proof of a conjecture of P. Erdös[J]. Combinatorial Theory and Its Applications, 1969:601-623. [4] KIERSTEAD H A, KOSTOCHKA A V, MYDLARZ M, et al. A fast algorithm for equitable coloring[J]. Combinatorica, 2010, 30(2):217-224. [5] CHEN B L, LIH K W, WU P L. Equitable coloring and the maximum degree[J]. European Journal of Combinatorics, 1994, 15(5):443-447. [6] KIERSTEAD H A, KOSTOCHKA A V. Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring[J]. Journal of Graph Theory, 2012, 71(1):31-48. [7] CHEN B L, LIH K W. Equitable coloring of trees[J]. Journal of Combinatorial Theory Series B, 1994, 61(1):83-87. [8] LIH K W, WU P L. On equitable coloring of bipartite graphs[J]. Discrete Mathematics, 1996, 151(1/2/3):155-160. [9] WANG Weifan. Equitable colorings of line graphs and complete r-partite graphs[J]. Systems Science and Mathematical Sciences, 2000, 13(2):190-194. [10] KOSTOCHKA A V. Equitable colorings of outerplanar graphs[J]. Discrete Mathematics, 2002, 258(1/2/3):373-377. [11] KOSTOCHKA A V, NAKPRASIT K. Equitable colourings of d-degenerate graphs[J]. Combinatorics, Probability and Computing, 2003, 12(1):53-60. [12] ZHANG Yi, YAP Hianpoh. Equitable colorings of planar graphs[J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 1998, 27:97-105. [13] NAKPRASIT K. Equitable colorings of planar graphs with maximum degree at least nine[J]. Discrete Mathematics, 2012, 312(5):1019-1024. [14] KOSTOCHKA A, LIN D, XIANG Z M. Equitable coloring of planar graphs with maximum degree at least eight[J]. Discrete Mathematics, 2024, 347(6):113964. [15] ZHANG X. On equitable colorings of sparse graphs[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39(1):257-268. [16] ZHANG X, WANG H J, XU L. Equitable coloring of three classes of 1-planar graphs[J]. Acta Mathematicae Applicatae Sinica: English Series, 2018, 34(2):362-372. [17] CRANSTON D, MAHMOUD R. Equitable coloring in 1-planar graphs[EB/OL]. http://arxiv.org/abs/2311.14915. [18] DONG A J, ZOU Q S, LI G J. Equitable and list equitable colorings of graphs with bounded maximum average degree[J]. ARS Comb, 2016, 124:303-311. [19] DONG A J, ZHANG X. Equitable coloring and equitable choosability of graphs with small maximum average degree[J]. Discussiones Mathematicae Graph Theory, 2018, 38(3):829. [20] ZHU J L, BU Y H. Equitable list colorings of planar graphs without short cycles[J]. Theoretical Computer Science, 2008, 407(1/2/3):21-28. |
[1] | 李锦,徐常青. 不含相交三角形IC-可平面图的邻点可区别边染色[J]. 《山东大学学报(理学版)》, 2023, 58(12): 134-139. |
[2] | 张江悦,徐常青. 最大平均度不超过4的图的线性2-荫度[J]. 山东大学学报(理学版), 2018, 53(6): 7-10. |
[3] | 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99. |
[4] | 姚京京, 徐常青. 最大度为3或4的图的邻和可区别全染色[J]. 山东大学学报(理学版), 2015, 50(02): 9-13. |
[5] | 张欣1,徐兰2,刘桂真1. 稀疏图的k-森林染色[J]. J4, 2011, 46(4): 1-3. |
|