您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 34-40.doi: 10.6040/j.issn.1671-9352.0.2023.067

• • 上一篇    

两类树图的加权Szeged指标的界

胡姣,刘蒙蒙*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2025-02-14
  • 通讯作者: 刘蒙蒙(1986— ),女,教授,博士研究生,研究方向为图论与组合优化. E-mail:liumm05@163.com
  • 作者简介:胡姣(1997— ),女,硕士研究生,研究方向为代数图论及其应用. E-mail:hujiao012@163.com
  • 基金资助:
    国家自然科学基金资助项目(11961040)

Bounds of weighted Szeged index of two kinds of tree graphs

HU Jiao, LIU Mengmeng   

  1. School of Mathematics and Science, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2025-02-14

摘要: 给定一个连通图G, 图G的加权Szeged指标的定义为Sw(G)=∑uv=e∈E(G)(dG(u)+dG(v))nGu(e)nGv(e),其中, dG(u)表示图G的顶点u的度, nGu(e)表示图G中距离顶点u比顶点v近的顶点个数。首先给出了一些图变换, 然后利用这些图变换得到了繁星的加权Szeged指标的上界、下界以及给定直径的树图的加权Szeged指标的上界, 并刻画了相应的极值图。

关键词: 加权Szeged指标, 繁星,

Abstract: Given a graph G, the weighted Szeged index of a graph G, denoted by Sw(G)=∑uv=e∈E(G)(dG(u)+dG(v))nGu(e)nGv(e), where dG(u)is the degree of u in G. For edge uv=e∈E(G), nu(e)represents the number of vertices closer to vertex u than vertex v in graph G. Some graph transformations are given, by using these graph transformations, the upper bound and lower bound of weighted Szeged index of blossomed stars and the upper bound of weighted Szeged index of trees with given diameters are obtained, and the corresponding extreme value graphs are characterized.

Key words: weighted Szeged index, blossomed star, tree

中图分类号: 

  • O157.5
[1] BONDY J A, MURTY U S R. Graph theory[M]. Berlin: Springer, 2008.
[2] WIENER H. Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69(1):17-20.
[3] GUTMAN I. A formula for the Wiener number of trees and its extension to graphs containing cycles[J]. Graph Theory Notes, 1994, 27(9):9-15.
[4] SIMIC S, GUTMAN I, BALTIC V. Some graphs with extremal Szeged index[J]. Mathematica Slovaca, 2000, 50(1):1-15.
[5] LIU Yan, YU Aimei, LU Mei, et al. On the Szeged index of unicyclic graphs with given diameter[J]. Discrete Applied Mathematics, 2017, 233:118-130.
[6] ZHOU Bo, CAI Xiaochun, DU Zhibin. On Szeged indices of unicyclic graphs[J]. Match Communications in Mathematical and in Computer Chemistry, 2010, 63:113-132.
[7] ILIC A, MILOSAVLJEVIC N. The weighted vertex PI index[J]. Mathematical and Computer Modelling, 2013, 57(3/4):623-631.
[8] NAGARAJAN S, PATTABIRAMAN K, CHANDRASEKHARAN M. Weighted Szeged index of generalized hierarchical product of graphs[J]. General Mathematics Notes, 2014, 23(2):85-95.
[9] PATTABIRAMAN K, KANDAN P. Weighted Szeged indices of some graph operations[J]. Transactions on Combinatorics, 2016, 5(1):25-35.
[10] ATANASOV R, FURTULA B, SKREKOVSKI R. Trees with minimum weighted Szeged index are of a large diameter[J]. Symmetry, 2020, 12(5):793.
[11] BOK J, FURTULA B. On extremal graphs of weighted Szeged index[J]. Match Communications in Mathematical and in Computer Chemistry, 2019, 82:93-109.
[12] DOLATI A, MOTEVALIAN I, EHYAEE A. Szeged index, edge Szeged index, and semi-star trees[J]. Discrete Applied Mathematics, 2010, 158(8):876-881.
[13] CHEN Wuxian, YAN Weigen. On the energy of blossomed stars[J]. Match Communications in Mathematical and in Computer Chemistry, 2020, 83:623-630.
[14] HUA Hongbo. Trees with given diameter and minimum second Geometric-Arithmetic index[J]. Match Communications in Mathematical and in Computer Chemistry, 2010, 64:631-638.
[1] 陈旭,邵荣侠,王国平. 带有割点的图的补图的距离谱半径[J]. 《山东大学学报(理学版)》, 2025, 60(2): 19-23.
[2] 陈宏宇. 树宽较小的图的线性荫度[J]. 《山东大学学报(理学版)》, 2024, 59(6): 25-28, 35.
[3] 刘欢,强会英,王洪申,白羽. 树图的2-距离和可区别染色[J]. 《山东大学学报(理学版)》, 2024, 59(2): 47-52, 58.
[4] 张文馨,李强,王宁,范小莉,王蕙,姜成平,梁玉. 山东省不同海拔区域常见树种树高、胸径及其生长关系的差异[J]. 《山东大学学报(理学版)》, 2024, 59(1): 132-138.
[5] 梁云,门昌骞,王文剑. 基于模型决策树的AdaBoost算法[J]. 《山东大学学报(理学版)》, 2023, 58(1): 67-75.
[6] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[7] 孙晓玲,高玉斌,杜建伟,任建斌. 准树图的零阶广义Randic指数[J]. 《山东大学学报(理学版)》, 2022, 57(12): 96-102.
[8] 王军震,张淑敏,葛慧芬. 折叠超立方体的广义3-连通度[J]. 《山东大学学报(理学版)》, 2022, 57(11): 42-49.
[9] 来金花,刘蒙蒙. 含有完美匹配树的最小Steiner k-Wiener指标[J]. 《山东大学学报(理学版)》, 2022, 57(10): 66-71.
[10] 曹闰烽,刘瑞贤,刘婧. 基于故障树和贝叶斯网络的危化品罐式运输车道路运输系统的可靠性分析[J]. 《山东大学学报(理学版)》, 2022, 57(1): 20-29.
[11] 张雨欣,郑斯航,房莹,郑慧慧,张良云. Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统[J]. 《山东大学学报(理学版)》, 2021, 56(8): 6-14.
[12] 贺晓丽,折延宏. 基于属性粒化的近似概念分析及规则提取[J]. 《山东大学学报(理学版)》, 2020, 55(5): 13-21.
[13] 马海峰,杨家海,薛庆水,鞠兴忠,朱浩之,林涛,原鑫鑫. 一种非同频远程数据持有检测方法[J]. 《山东大学学报(理学版)》, 2020, 55(5): 81-87.
[14] 乔宁,房莹,张良云. Sweedler四维Hopf代数上的Poisson代数结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 56-62.
[15] 凌春辉,张明忠,吕桂云,崔浩然,颜攀,韦业,刘胜元,马风云,王华田,刘秀梅,马玲. 鲁中南山区松树人工林近自然经营效果分析[J]. 《山东大学学报(理学版)》, 2020, 55(11): 8-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!