您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 96-102.doi: 10.6040/j.issn.1671-9352.0.2021.184

• • 上一篇    

准树图的零阶广义Randic指数

孙晓玲,高玉斌,杜建伟,任建斌   

  1. 中北大学数学学院, 山西 太原 030051
  • 发布日期:2022-12-05
  • 作者简介:孙晓玲(1981— ),女,博士,副教授,研究方向为图论及其应用. E-mail:sunxiaoling@nuc.edu.cn
  • 基金资助:
    山西省自然科学基金(青年)资助项目(201901D211227);山西省自然科学基金资助项目(201801D121158)

Zeroth-order general Randic index of quasi-tree graphs

SUN Xiao-ling, GAO Yu-bin, DU Jian-wei, REN Jian-bin   

  1. School of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
  • Published:2022-12-05

摘要: 利用零阶广义Randic指数的性质,通过分析准树图的结构,确定了具有完美匹配和p个悬挂点的准树图的零阶广义Randic指数的极值,并刻画了相应的极图。

关键词: 零阶广义Randic指数, 准树图, 完美匹配, 悬挂点

Abstract: By using the properties of the zeroth-order general Randic index and analyzing the structure of the quasi-tree graphs, the extremal values of zeroth-order general Randic indices of quasi-tree graphs with perfect matchings and p pendant vertices are determined. Furthermore, the corresponding extremal quasi-tree graphs are identified.

Key words: zeroth-order general Randic index, quasi-tree graph, perfect matching, pendant vertex

中图分类号: 

  • O157.5
[1] GUTMAN I, FURTULA B. Novel molecular structure descriptors-theory and applications:I[M]. Serbia: University of Kragujevac, 2010.
[2] GUTMAN I, FURTULA B. Novel molecular structure descriptors-theory and applications:II[M]. Serbia: University of Kragujevac, 2010.
[3] TODESCHINI R, CONSONNI V. Handbook of molecular descriptors[M]. Weinheim: Wiley-VCH, 2000.
[4] RANDIC M. On characterization of molecular branching[J]. Journal of the American Chemical Society, 1975, 97:6609-6615.
[5] KIER L B, HALL L H. Molecular connectivity in chemistry and drug research[M]. New York: Academic Press, 1976.
[6] KIER L B, HALL L H. Molecular connectivity in structure-activity analysis[M]. Champaign: Research Studies Press, 1986.
[7] BOLLOBAS B, ERDOS P. Graphs of extremal weights[J]. ARS Combinatoria, 1998, 50:225-233.
[8] KIER L B, HALL L H. The nature of structure-activity relationships and their relation to molecular connectivity[J]. European Journal of Medicinal Chemistry, 1977, 12:307-312.
[9] LI Xueliang, ZHENG Jie. A unified approach to the extremal trees for different indices[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2005, 54:195-208.
[10] LI Xueliang, SHI Yongtang. A survey on the Randic index[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2008, 59:127-156.
[11] DU Jianwei, SHAO Yanling, SUN Xiaoling. The zeroth-order general Randic index of graphs with a given clique number[J]. Journal of the Korean Mathematical Society, 2020, 28:405-419.
[12] WU Renfang, CHEN Hanlin, DENG Hanyuan. On the monotonicity of topological indices and the connectivity of a graph[J]. Applied Mathematics and Computation, 2017, 298:188-200.
[13] KHALID S, ALI A. On the zeroth-order general Randic index, variable sum exdeg index and trees having vertices with prescribed degree[J]. Discrete Mathematics, Algorithms and Applications, 2018, 10: 1850015.
[14] MILOSEVIC P, MILOVANOVIC I, MILOVANOVIC E, et al. Some inequalities for general zeroth-order Randic index[J]. Filomat, 2019, 33:5249-5258.
[15] AHMEDA H, BHATTIA A A, ALI A. Zeroth-order general Randic index of cactus graphs[J]. AKCE International Journal of Graphs and Combinatorics, 2019, 16:182-189.
[16] JAMIL M K, TOMESCU I, IMRAN M, et al. Some bounds on zeroth-order general Randic index[J]. Mathematics, 2020, 8(1):98-109.
[17] SU Guifu, YAN Jingru, CHEN Zhibing, et al. Some extremal graphs with respect to the zeroth-order general Randic index[J]. Utilitas Mathematica, 2020, 114:73-98.
[18] BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: Elsevier, 1976.
[19] DEHGHAN-ZADEH T, ASHRAF A R. Atom-bond connectivity index of quasi-tree graphs[J]. Rendiconti del Circolo Matematico di Palermo, 2014, 63:347-354.
[20] LI Shuchao, LI Xuechao, JING Wei. On the extremal Merrifield-Simmons index and Hosoya index of quasi-tree graphs[J]. Discrete Applied Mathematics, 2009, 157:2877-2885.
[21] LU Mei, GAO Jinwu. On the Randic index of quasi-tree graphs[J]. Journal of Mathematical Chemistry, 2007, 42: 297-310.
[22] QIAO Shengning. On the Zagreb index of quasi-tree graphs[J]. Applied Numerical Mathematics, 2010, 10:147-150.
[23] QIAO Shengning. On zeroth-order general Randic index of quasi-tree graphs containing cycles[J]. Discrete Optimization, 2010, 7:93-98.
[24] SUN Xiaoling, GAO Yubin, DU Jianwei. The harmonic index of two-trees and quasi-tree graphs[J]. Journal of Mathematical Inequalities, 2019, 13:479-493.
[25] XU Kexiang, WANG Jinlan, LIU Hongshuang. The Harary index of ordinary and generalized quasi-tree graphs[J]. Journal of Applied Mathematics and Computing, 2014, 45:365-374.
[26] SUN Xiaoling, DU Jianwei. On variable sum exdeg indices of quasi-tree graphs and unicyclic graphs[J]. Discrete Dynamics in Nature and Society, 2020, 2020:1317295.
[27] DU Jianwei, SUN Xiaoling. Quasi-tree graphs with extremal general multiplicative Zagreb indices[J]. IEEE Access, 2020, 8:194676-194684.
[28] HUA Hongbo, WANG Maolin, WANG Hongzhuan. On zeroth-order general Randic index of conjugated unicyclic graphs[J]. Journal of Mathematical Chemistry, 2007, 43:737-748.
[1] 杨瑞,刘成立,武楠楠. n棱柱的完美匹配计数及其k-共振性[J]. 《山东大学学报(理学版)》, 2022, 57(11): 37-41.
[2] 来金花,刘蒙蒙. 含有完美匹配树的最小Steiner k-Wiener指标[J]. 《山东大学学报(理学版)》, 2022, 57(10): 66-71.
[3] 王霞,边红,于海征. 整可逆图的克罗内克积的逆[J]. 《山东大学学报(理学版)》, 2021, 56(11): 87-92.
[4] 王倩. k-连通图中生成树和完美匹配上的可收缩边[J]. 山东大学学报(理学版), 2016, 51(8): 29-34.
[5] 曹庆信,陈祥恩,苏克义.

具有给定悬挂点数目的树的独立指数的最大小值

[J]. J4, 2009, 44(4): 31-36 .
[6] 王洪伟. 二部图匹配强迫数的谱[J]. J4, 2009, 44(12): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!