您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 132-138.doi: 10.6040/j.issn.1671-9352.0.2023.216

•   • 上一篇    下一篇

山东省不同海拔区域常见树种树高、胸径及其生长关系的差异

张文馨1(),李强2,王宁3,范小莉1,王蕙3,姜成平4,梁玉1,*()   

  1. 1. 山东省林业科学研究院, 山东 济南 250014
    2. 海南医学院热带医学院, 海南 海口 571199
    3. 山东大学生命科学学院, 山东 青岛 266237
    4. 烟台市森林资源监测保护服务中心, 山东 烟台 264001
  • 收稿日期:2023-05-12 出版日期:2024-01-20 发布日期:2024-01-19
  • 通讯作者: 梁玉 E-mail:zhangwenxin_508@163.com;liangyu_79@163.com
  • 作者简介:张文馨(1989—), 女, 高级工程师, 博士, 研究方向为生态学. E-mail: zhangwenxin_508@163.com
  • 基金资助:
    国家科技基础性工作专项项目资助(2011FY110300);白榆白蜡森林认证资助项目(SCSFP-RZ-1);核桃森林认证资助项目(SCSFP-RZ-2)

Differences in height, diameter at breast height, and growth relationships between them of common tree species at different altitudes in Shandong Province

Wenxin ZHANG1(),Qiang LI2,Ning WANG3,Xiaoli FAN1,Hui WANG3,Chengping JIANG4,Yu LIANG1,*()   

  1. 1. Shandong Academy of Forestry, Jinan 250014, Shandong, China
    2. School of Tropical Medicine of Hainan Medical University, Haikou 571199, Hainan, China
    3. School of Life Sciences of Shandong University, Qingdao 266237, Shandong, China
    4. Yantai Forest Resources Monitoring and Protection Service Center, Yantai 264001, Shandong, China
  • Received:2023-05-12 Online:2024-01-20 Published:2024-01-19
  • Contact: Yu LIANG E-mail:zhangwenxin_508@163.com;liangyu_79@163.com

摘要:

利用山东植物群落清查数据, 选取山东常见树种为研究对象, 分析其树高、胸径特征, 采用单因素方差分析法比较树高、胸径在不同海拔区域是否存在显著差异, 采用标准化主轴估计法研究不同海拔区域不同树种树高和胸径异速生长关系。研究发现, 不同海拔区域间树木的树高、胸径及其生长关系存在显著差异, 不同海拔区域各树种采取的异速生长模式有所差异。麻栎、刺槐、栓皮栎这3种阔叶树种在不同海拔区域树高-胸径生长关系均呈现异速生长模式, 胸径的生长速率大于树高的生长速率。侧柏在低海拔区域胸径的生长速率大于树高的生长速率, 而在中海拔区域树高的生长速率大于胸径的生长速率。油松在低海拔区域树高的生长速率较快, 而在中海拔和高海拔区域胸径的生长速率较快。赤松和日本落叶松分别在高海拔和中海拔区域采取等速生长模式, 在其他海拔区域采取异速生长模式, 胸径的生长速率大于树高的生长速率。海拔带来的环境变化能够影响树木的生长过程, 但不同树种生长的响应差异是其所处生境和物种遗传特性共同作用的结果。

关键词: 树高, 胸径, 异速生长, 海拔

Abstract:

Based on the data of plant community inventory in Shandong Province, the common tree species were selected as the research objects to analyze the characteristics of diameter at breast height(DBH) and tree height. Single factor analysis of variance was used to compare whether DBH and tree height were significantly different at different altitudes. The allometric growth relationship between tree height and DBH of different tree species at different altitudes was studied by standardized major axis estimation. The study found that there were significant differences in DBH, tree height and their growth relationship at different altitudes, and height-DBH allometry of different tree species at different altitudes was different. The height-DBH growth relationship of three broad-leaved tree species, Quercus acutissima, Robinia pseudoacacia and Quercus variabilis, shows allometry growth at different altitudes, and the growth rate of DBH is greater than that of tree height. At low altitude, the growth rate of DBH of Platycladus orientalis was higher than that of tree height, while at middle altitude, the growth rate of tree height was higher than that of DBH. For Pinus tabulaeformis, the growth rate of tree hight is faster at low altitude areas, while the growth rate of DBH is faster in middle and high altitude areas. Pinus densiflora and Larix kaempferi have adopted isokinetic growth patterns in high and medium altitude areas. The environmental changes caused by altitude gradients can affect the growth process of trees, but the differences in growth response of different tree species are the result of the combined effects of habitat and genetic characteristics.

Key words: tree height, diameter at breast height, allometry, altitude

中图分类号: 

  • Q948

表1

山东常见树种调查信息表"

树种 调查个体数 海拔/m 平均树高/m 平均胸径/cm
侧柏 2 888 31~841 7.77±0.05 12.37±0.10
赤松 4 120 62~1 058 5.97±0.05 11.91±0.10
油松 3 231 80~1 344 6.32±0.07 13.26±0.12
日本落叶松 1 010 125~1 339 12.80±0.20 19.34±0.29
麻栎 2 632 7~1 208 7.38±0.07 12.28±0.14
刺槐 6 483 0~1 162 7.92±0.04 11.75±0.08
栓皮栎 1 228 40~922 7.58±0.10 12.68±0.24

图1

不同海拔山东主要树种的胸径和树高 CB: 侧柏, CS: 赤松, YS: 油松, LYS: 日本落叶松, ML: 麻栎, CH: 刺槐, SPL: 栓皮栎。注:a、b、c代表不同组间显著性差异的比较结果。两组间有相同字母,则两组间无显著差异;两组间无相同字母,则两组间存在显著差异。"

表2

山东常见树种不同海拔胸径-树高的异速生长关系"

树种 海拔/m 斜率 截距 斜率下限 斜率上限 截距下限 截距上限 R2 P 异速生长模式
< 500 0.73 0.08 0.70 0.76 0.05 0.11 0.37 < 0.001 -
侧柏 500~1 000 1.23 -0.39 1.16 1.30 -0.47 -0.32 0.15 < 0.001 +
>1 000
< 500 0.89 -0.21 0.87 0.92 -0.24 -0.18 0.42 < 0.001 -
赤松 500~1 000 0.92 -0.18 0.87 0.96 -0.23 -0.13 0.48 < 0.001 -
>1 000 1.02 -0.32 0.89 1.17 -0.48 -0.16 0.36 0.76 =
< 500 1.20 -0.53 1.15 1.24 -0.58 -0.48 0.51 < 0.001 +
油松 500~1 000 0.92 -0.24 0.89 0.96 -0.28 -0.20 0.32 < 0.001 -
>1 000 0.83 -0.10 0.76 0.91 -0.19 -0.01 0.38 < 0.001 -
< 500 0.60 0.30 0.43 0.84 0.05 0.54 0.28 < 0.001 -
日本落叶松 500~1 000 0.98 -0.14 0.94 1.01 -0.19 -0.10 0.73 0.21 =
>1 000 0.86 -0.04 0.78 0.95 -0.15 0.06 0.32 < 0.001 -
< 500 0.89 -0.10 0.86 0.92 -0.13 -0.06 0.52 < 0.001 -
麻栎 500~1 000 0.81 0.02 0.77 0.84 -0.02 0.06 0.59 < 0.001 -
>1 000 0.69 0.05 0.57 0.83 -0.08 0.17 0.60 < 0.001 -
< 500 0.77 0.08 0.76 0.79 0.07 0.10 0.57 < 0.001 -
刺槐 500~1 000 0.79 0.07 0.78 0.81 0.05 0.09 0.65 < 0.001 -
>1 000 0.86 -0.07 0.78 0.95 -0.16 0.02 0.74 < 0.001 -
< 500 0.64 0.19 0.62 0.67 0.17 0.22 0.57 < 0.001 -
栓皮栎 500~1 000 0.83 -0.05 0.77 0.90 -0.13 0.03 0.34 < 0.001 -
>1 000
1 AIBA S I , KOHYAMA T . Tree species stratification in relation to allometry and demography in warm-temperate rain forest[J]. Journal of Ecology, 1996, 84 (2): 207- 218.
doi: 10.2307/2261356
2 韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32 (4): 951- 960.
doi: 10.3773/j.issn.1005-264x.2008.04.025
HAN Wenxuan , FANG Jingyun . Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power[J]. Chinese Journal of Plant Ecology, 2008, 32 (4): 951- 960.
doi: 10.3773/j.issn.1005-264x.2008.04.025
3 MOONEY K A , HALITSCHKE R , KESSLER A . Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 326, 1642- 1644.
4 QIU H , LIU S , ZHANG Y , et al. Variation in height-diameter allometry of ponderosa pine along competition, climate, and species diversity gradients in the western United States[J]. Forest Ecology and Management, 2021, 497 (1): 119477.
5 ZHANG X , CHHIN S , FU L , et al. Climate-sensitive tree height-diameter allometry for Chinese fir in southern China[J]. Forestry, 2019, 92, 167- 176.
doi: 10.1093/forestry/cpy043
6 李利平, 安尼瓦尔·买买提, 王襄平. 新疆山地针叶林乔木胸径-树高关系分析[J]. 干旱区研究, 2011, (1): 47- 53.
LI Liping , ANIVAR Maimaiti , WANG Xiangping . Analysis on the relationship between DBH and tree height of coniferous forests in mountainous areas of Xinjiang[J]. Arid Zone Research, 2011, (1): 47- 53.
7 王仁卿, 周光裕. 山东植被[M]. 济南: 山东科学技术出版社, 2000.
WANG Renqing , ZHOU Guangyu . Vegetation in Shandong Province[M]. Jinan: Shandong Science and Technology Press, 2000.
8 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容方法和技术规范[J]. 生物多样性, 2009, 17 (6): 533- 548.
FANG Jingyun , WANG Xiangping , SHEN Zehao , et al. Methods and protoclols for plant community inventory[J]. Biodiversity Science, 2009, 17 (6): 533- 548.
9 HARVEY P J , PAGEL M D . The comparative method in evolutionary biology[M]. Oxford: Oxford University Press, 1991.
10 WARTON D I , WRIGHT I J , FALSTER D S , et al. Bivariate linefitting methods for allometry[J]. Biological Review, 2006, 81 (2): 259- 291.
doi: 10.1017/S1464793106007007
11 WARTON D I , DUURSMA R A , FALSTER D S , et al. SMATR 3-an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3, 257- 259.
doi: 10.1111/j.2041-210X.2011.00153.x
12 TASKINEN S , WARTON D I . Robust estimation and inference for bivariate line-fitting in allometry[J]. Biometrical Journal, 2011, 53 (4): 652- 672.
doi: 10.1002/bimj.201000018
13 陈甲瑞, 王小兰. 藏东南高山松异速生长关系的海拔差异性[J]. 湖南农业科学, 2021, (2): 29- 32.
CHEN Jiarui , WANG Xiaolan . Altitude differences of allometric growth relationship of Pinus Densata in Southeast Tibet[J]. Hunan Agricultural Sciences, 2021, (2): 29- 32.
14 李钰, 赵成章, 董小刚, 等. 高寒草地狼毒枝-叶性状的坡度差异性[J]. 植物生态学报, 2013, 37 (8): 709- 717.
LI Yu , ZHAO Chengzhang , DONG Xiaogang , et al. Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland[J]. Chinese Journal of Plant Ecology, 2013, 37 (8): 709- 717.
15 KRAMER K , LEINONEN I , LOUSTAU D . The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview[J]. International Journal of Biometeorology, 2000, 44 (2): 67- 75.
doi: 10.1007/s004840000066
16 喻树龙, 袁玉江, 秦莉, 等. 天山北坡中部不同海拔高度雪岭云杉树轮宽度气候响应对比分析[J]. 沙漠与绿洲气象, 2016, 10 (3): 30- 38.
YU Shulong , YUAN yujiang , QIN Li , et al. Tree-ring-width growth responses of Picea schrenkiana to climate change for different elevations in the central Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10 (3): 30- 38.
17 谭一波, 申文辉, 田红灯, 等. 猫儿山不同海拔植物群落树木构型差异及其影响因子[J]. 应用生态学报, 2019, 30 (8): 2614- 2620.
TAN Yibo , SHEN Wenhui , TIAN Hongdeng , et al. Tree architecture variation of plant communities along altitude and impact factors in Maoer Mountain, Guangxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30 (8): 2614- 2620.
18 朱苗苗, 朱强根, 李波, 等. 植物构件间异速生长关系研究进展[J]. 安徽农学通报, 2022, 28 (2): 36- 39.
ZHU Miaomiao , ZHU Qianggen , LI Bo , et al. Research progress of allometry growth relationship between plant components[J]. Anhui Agricultural Science Bulletin, 2022, 28 (2): 36- 39.
19 张文馨. 山东植物群落及其物种多样性分布格局与形成机制[D]. 济南: 山东大学, 2016.
ZHANG Wenxin. The spatial patterns of plant species diversity and their underlying mechanisms in Shandong Province, China[D]. Jinan: Shandong University, 2016.
20 LINES E R , ZAVALA M A , PURVES D W , et al. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition[J]. Global Ecology & Biogeography, 2012, 21 (10): 1017- 1028.
21 LEAL S , MELVIN T M , GRABNER M , et al. Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate[J]. Boreas, 2007, 36 (4): 426- 440.
doi: 10.1080/03009480701267063
[1] 张文馨,范小莉,王强,房用,梁玉. 黄河三角洲植物多样性与生态系统多功能性间的关系[J]. 《山东大学学报(理学版)》, 2020, 55(1): 110-116.
[2] 张秀华,齐海鹰,王仁卿,刘建. 山东省自然保护区植物多样性研究[J]. 《山东大学学报(理学版)》, 2019, 54(7): 1-10.
[3] 杜 宁,郭卫华,吴大千,王 琦,王仁卿* . 昆嵛山典型林下灌草层植物种间关系研究[J]. J4, 2007, 42(3): 71-77 .
[4] 李延成,程传民,杨吉华*,王兴翠,刘培娟 . 新泰市土门林场不同混交林枯落物层持水性能的研究[J]. J4, 2007, 42(1): 69-75 .
[5] 徐 飞,郭卫华,王玉芳,王 炜,杜 宁,王仁卿* . 济南市校园6个绿化树种光合荧光特征比较初探[J]. J4, 2007, 42(5): 86-94 .
[6] 吴大千,杜 宁,王 炜,翟 雯,王玉芳,王仁卿,张治国* . 昆嵛山森林群落下灌草层结构与多样性研究[J]. J4, 2007, 42(1): 83-88 .
[7] 张宪强,郭卫华,杨继红,刘成程,王仁卿* . 刺槐(Robinia pseudoacacia)无性系种群结构与生长动态的研究[J]. J4, 2006, 41(2): 135-139 .
[8] 张秀华,齐海鹰,刘建,王仁卿,赵静. 山东省珍稀濒危植物分布及其影响因素[J]. 《山东大学学报(理学版)》, 2021, 56(5): 42-50.
[9] 宋百敏,刘建,张玉虎,王仁卿. 废弃采石场自然恢复过程中土壤和植被特征[J]. 《山东大学学报(理学版)》, 2022, 57(1): 8-19.
[10] 王仁卿,张煜涵,孙淑霞,郑培明. 黄河三角洲植被研究回顾与展望[J]. 《山东大学学报(理学版)》, 2021, 56(10): 135-148.
[11] 张文馨,王蕙,范小莉,王强,房用,梁玉. 山东孔林植物群落动态变化及演替分析[J]. 《山东大学学报(理学版)》, 2021, 56(11): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[2] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[3] 刘洪华 . 色散方程的交替分组迭代方法[J]. J4, 2007, 42(1): 19 -23 .
[4] 刘昆仑. 变结构pair copula模型在金融危机传染分析中的应用[J]. 山东大学学报(理学版), 2016, 51(6): 104 -110 .
[5] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[6] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[7] 胡选子1, 谢存禧2. 基于人工免疫网络的机器人局部路径规划[J]. J4, 2010, 45(7): 122 -126 .
[8] 郭乔进,丁轶,李宁. 一种基于上下文信息的乳腺肿块ROI检测方法[J]. J4, 2010, 45(7): 70 -75 .
[9] 付海艳,卢昌荆,史开泉 . (F,F-)-规律推理与规律挖掘[J]. J4, 2007, 42(7): 54 -57 .
[10] 李小南,李璧镜,李生刚 . 新组合概型的生成及其性质[J]. J4, 2006, 41(5): 95 -99 .