《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 52-56.doi: 10.6040/j.issn.1671-9352.0.2023.301
• • 上一篇
郝国亮1,2,吴愉琪2,3,姜海宁1
HAO Guoliang1,2, WU Yuqi2,3, JIANG Haining1
摘要: 利用图的阶、边数以及度等参数得到了全局罗马控制数与罗马控制数间一些新的不等式关系。
中图分类号:
[1] ABD AZIZ N A, RAD NADER J, KAMARULHAILI H. A note on the double domination number in maximal outerplanar and planar graphs[J]. Rairo-Operations Research, 2022, 56(5):3367-3371. [2] HUA Xinying, XU Kexiang, HUA Hongbo. Relating the annihilation number and the total domination number for some graphs[J]. Discrete Applied Mathematics, 2023, 332:41-46. [3] HENNING M A, KLOSTERMEYER W F. Italian domination in trees[J]. Discrete Applied Mathematics, 2017, 217:557-564. [4] 郝国亮,曾淑婷. 全局3-彩虹控制数等于顶点数的图的刻画[J]. 应用数学学报,2024,47(3):417-428. HAO Guoliang, ZENG Shuting. A characterization of graphs with global 3-rainbow domination number equal to the number of vertices[J]. Acta Mathematicae Applicatae Sinica, 2024, 47(3):417-428. [5] HENNING M A, PILSNIAK M, TUMIDAJEWICZ E. Bounds on the paired domination number of graphs with minimum degree at least three[J]. Applied Mathematics and Computation, 2022, 417:126782. [6] COCKAYNE E J, DREYER P A, HEDETNIEMI S M, et al. Roman domination in graphs[J]. Discrete Mathematics, 2004, 278:11-22. [7] MARTINEZ A C, GARCIA-GOMEZ C, RODRIGUEZ-VELAZQUEZ J A. Perfect domination, Roman domination and perfect Roman domination in lexicographic product graphs[J]. Fundamenta Informaticae, 2022, 185(3):201-220. [8] CHIN A Y M, MAIMANI H R, POURNAKI M R, et al. Unitary Cayley graphs whose Roman domination numbers are at most four[J]. Akce International Journal of Graphs and Combinatorics, 2022, 19(1):36-40. [9] ATAPOUR M, SHEIKHOLESLAMI S M, VOLKMANN L. Global Roman domination in trees[J]. Graphs and Combinatorics, 2015, 31(4):813-825. [10] AHANGAR H A. On the global Roman domination number in graphs[J]. Iranian Journal of Science and Technology Transactions A-Science, 2016, 40(3):157-163. [11] PUSHPAM P R L, PADMAPRIEA S. Global Roman domination in graphs[J]. Discrete Applied Mathematics, 2016, 200:176-185. [12] CHELLALI M, HAYNES T W, HEDETNIEMI S T, et al. Roman {2}-domination[J]. Discrete Applied Mathematics, 2016, 204:22-28. [13] AHANGAR H A, HENNING M A, SAMODIVKIN V, et al. Total Roman domination in graphs[J]. Applicable Analysis and Discrete Mathematics, 2016, 10(2):501-507. |
[1] | 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36. |
[2] | 高超,侯新民*. 关于“给定控制数的二部图的最大边数”的一点注记[J]. J4, 2013, 48(8): 21-23. |
[3] | 陈宏宇1,2, 张丽3. 给定控制数的连通二部图的最大边数[J]. J4, 2012, 47(8): 11-15. |
[4] | 袁秀华. 完全图的全符号控制数[J]. J4, 2010, 45(8): 43-46. |
[5] | 陈宏宇 牛翠霞 邹青松. 树的k-分支限制控制数的一个下界[J]. J4, 2010, 45(2): 1-4. |
[6] | 袁秀华. 图的符号边全控制数[J]. J4, 2009, 44(8): 21-24. |
[7] | 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111-113 . |
|