《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 34-51.doi: 10.6040/j.issn.1671-9352.0.2023.373
• • 上一篇
江立辉1,徐金辉2,陈华友3
JIANG Lihui1, XU Jinhui2, CHEN Huayou3
摘要: 为了保证决策信息的完整性,将Muirhead平均算子运用到区间犹豫梯形模糊环境中,提出了区间犹豫梯形模糊Muirhead平均算子、区间犹豫梯形模糊几何Muirhead平均算子的概念。给出了它们的性质及定理,并介绍了算子的几种退化形式。考虑到Choquet积分可以客观的计算属性权重,将Choquet积分引入上述算子,提出了区间犹豫梯形模糊Choquet Muirhead平均算子和区间犹豫梯形模糊几何Choquet Muirhead平均算子的概念。同时构造了基于区间犹豫梯形模糊Choquet Muirhead平均算子的多属性决策模型。最后,将其应用到绿色电池供应商选择问题中,分析其可行性和有效性。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J].Information & Control, 1965, 8(3):338-353. [2] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010:529-539. [3] CHEN N, XU Z S, XIA M M. Interval-valued hesitant preference relations and their applications to group decision making[J]. Knowledge-Based Systems, 2013, 37:528-540. [4] 张迪,成央金,杨柳. 区间犹豫梯形模糊Bonferroni Mean算子及其应用[J]. 计算机工程与应用,2020,56(1):53-62. ZHANG Di, CHENG Yangjin, YANG Liu. Interval hesitant trapezoidal fuzzy bonferroni mean operator and its application[J]. Computer Engineering and Applications, 2020, 56(1):53-62. [5] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1):183-190. [6] 陈华友,陈诚. 基于I-IOWG算子集结的组合判断矩阵的相容性和一致性[J]. 系统工程与电子技术,2009,31(9):2137-2140. CHEN Huayou, CHEN Cheng. Research on compatibility and consistency of combination judgment matrices based on I-IOWG operators[J]. Systems Engineering and Electronics, 2009, 31(9):2137-2140. [7] ZHOU L G, CHEN H Y. Continuous generalized OWA operator and its application to decision making[J]. Fuzzy Sets and Systems, 2011, 168(1):18-34. [8] ZHOU L G, CHEN H Y, MERIGÓ J M, et al. Uncertain generalized aggregation operators[J]. Expert Systems with Applications, 2012, 39(1):1105-1117. [9] WAN Shuping. Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Mathematical Modelling, 2013, 37(6):4112-4126. [10] WAN S P, YI Z H. Power average of trapezoidal intuitionistic fuzzy numbers using strict t-norms and t-conorms[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1035-1047. [11] WAN S P, DONG J Y. Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Soft Computing Journal, 2015, 29:153-168. [12] YAGER R R. On generalized Bonferroni mean operators for multi-criteria aggregation[J]. International Journal of Approximate Reasoning, 2009, 50(8):1279-1286. [13] BELIAKOV G, PRADERA A, CALVO T. Choice and construction of aggregation functions[M] //Studies in Fuzziness and Soft Computing. Berlin: Springer Berlin Heidelberg, 2007:261-269. [14] MUIRHEAD R F. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters[J]. Proceedings of the Edinburgh Mathematical Society, 1902, 21:144. [15] 臧誉琪,韩姗姗,费晓香. q-阶正交犹豫模糊幂Muirhead平均算子及推荐应用[J]. 模糊系统与数学,2020,34(5):90-99. ZANG Yuqi, HAN Shanshan, FEI Xiaoxiang. q-rung orthopair hesitant fuzzy power muirhead mean operators with their application to recommendations[J]. Fuzzy Systems and Mathematics, 2020, 34(5):90-99. [16] YANG Z L, CHANG J P. A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator[J]. Environmental Research, 2021, 193:110385. [17] 任耀军,袁修久,黄林,等. 毕达哥拉斯三角犹豫模糊Muirhead平均算子的目标威胁评估应用[J]. 电光与控制,2021,28(4):16-20,63. REN Yaojun, YUAN Xiujiu, HUANG Lin, et al. Pythagorean hesitant triangular fuzzy muirhead mean operator and its application in target threat assessment[J]. Electronics Optics & Control, 2021, 28(4):16-20, 63. [18] PUNETHA T, KOMAL. Picture fuzzy power Muirhead mean operators and their application to multi attribute decision making[J]. Journal of Industrial and Management Optimization, 2023, 19(6):4321-4349. [19] IMRAN R, ULLAH K, ALI Z, et al. The theory of prioritized Muirhead mean operators under the presence of complex single-valued Neutrosophic values[J]. Decision Analytics Journal, 2023, 7:100214. [20] CHOQUET G. Theory of capacities[J]. Annales de LInstitut Fourier, 1954, 5:131-295. [21] 罗世华,刘俊. 改进排序的梯形直觉模糊Choquet Bonferroni算子的多属性群决策方法[J]. 中国管理科学,2020,28(1):134-143. LUO Shihua, LIU Jun. A novel sort method for trapezoidal intuitionistic fuzzy MAGDM with choquet bonferroni means[J]. Chinese Journal of Management Science, 2020, 28(1):134-143. [22] 刘超,汤国林,刘宸琦,等. 基于区间对偶犹豫不确定语言广义Banzhaf Choquet积分算子的多属性决策方法[J]. 系统工程理论与实践,2018,38(5):1203-1216. LIU Chao, TANG Guolin, LIU Chenqi, et al. Muti-criteria decision making based on interval-valued dual hesitant uncertain linguistic generalized Banzhaf Choquet integral operator[J]. Systems Engineering-Theory & Practice, 2018, 38(5):1203-1216. [23] DONG J Y, LIN L L, WANG F, et al. Generalized choquet integral operator of triangular atanassovs intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2016, 24(5):647-683. [24] 万树平,董九英. 基于三角直觉模糊数Choquet积分算子的多属性决策方法[J]. 中国管理科学,2014,22(3):121-129. WAN Shuping, DONG Jiuying. Multi-attribute decision making based on triangular intuitionistic fuzzy number choquet integral operator[J]. Chinese Journal of Management Science, 2014, 22(3):121-129. [25] TAN C Q, CHEN X H. Induced intuitionistic fuzzy Choquet integral operator for multicriteria decision making[J]. International Journal of Intelligent Systems, 2011, 26(7):659-686. [26] PENG J J, WANG J Q, HU J H, et al. Multi-criteria decision-making approach based on single-valued neutrosophic hesitant fuzzy geometric weighted choquet integral heronian mean operator[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(3):3661-3674. [27] JOSHI D, KUMAR S. Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making[J]. European Journal of Operational Research, 2016, 248(1):183-191. [28] PENG X D, YANG Y. Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making[J]. International Journal of Intelligent Systems, 2016, 31(10):989-1020. [29] LIAO Z Q, LIAO H C, TANG M, et al. A choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: case study of higher business education evaluation[J]. Information Fusion, 2020, 62:121-133. [30] WU Y N, ZHANG T, YI L Q. Regional energy Internet project investment decision making framework through interval type-2 fuzzy number based Choquet integral fuzzy synthetic model[J]. Applied Soft Computing, 2021, 111:107718. [31] PEREIRA A A, PEREIRA M A. Energy storage strategy analysis based on the choquet multi-criteria preference aggregation model: the Portuguese case[J]. Socio-Economic Planning Sciences, 2023, 85:101437. [32] WAN S P, YAN J, ZOU W C, et al. Generalized shapley choquet integral operator based method for interactive interval-valued hesitant fuzzy uncertain linguistic multi-criteria group decision making[J]. IEEE Access, 2020, 8:202194-202215. [33] 陈树伟,蔡丽娜. 区间值犹豫模糊集[J].模糊系统与数学,2013,27(6):38-44. CHEN Shuwei, CAI Lina. Interval-valued Hesitant Fuzzy Sets[J]. Fuzzy Systems and Mathematics, 2013, 27(6):38-44. [34] SUGENO M. Theory of fuzzy integral and its application[D]. Doc Thesis Tokyo Institute of Technology, 1974:96-102. [35] MUROFUSHI T, SUGENO M. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227. [36] QIN J D, LIU X W. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection[J]. Kybernetes, 2016, 45(1):2-29. |
[1] | 杜文胜. q-阶正交模糊自对偶聚合算子及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(1): 120-126. |
[2] | 吴维,张贤勇,杨霁琳. 广义区间值q阶orthopair犹豫模糊软集及其多属性决策[J]. 《山东大学学报(理学版)》, 2025, 60(1): 101-110. |
[3] | 周宇,周礼刚,林志超,徐鑫. 概率q阶犹豫模糊TODIM方法及其应用[J]. 《山东大学学报(理学版)》, 2023, 58(6): 9-17. |
[4] | 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87. |
[5] | 黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟. 区间值q阶犹豫模糊Frank集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2021, 56(3): 54-66. |
[6] | 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42. |
[7] | 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9. |
[8] | 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(08): 62-71. |
[9] | 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78-82. |
[10] | 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97. |
[11] | 李艳红,王贵君 . 广义模糊值Choquet积分的强序连续与伪S性[J]. J4, 2008, 43(4): 76-80 . |
[12] | 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 . |
[13] | 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 . |
[14] | 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 . |
|