您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 21-33.doi: 10.6040/j.issn.1671-9352.0.2023.322

• • 上一篇    

基于W-G-VaR模型的股票市场风险测度

张慧1,魏佳琪1,孟纹羽2,朱庆峰1   

  1. 1.山东财经大学统计与数学学院, 山东 济南 250014;2.山东财经大学金融学院, 山东 济南 250014
  • 发布日期:2025-07-25
  • 作者简介:张慧(1973— ),女,教授,博士,研究方向为金融工程与风险管理. E-mail:drzhanghui@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2022MA029)

Stock market risk measurement based on W-G-VaR model

ZHANG Hui1, WEI Jiaqi1, MENG Wenyu2, ZHU Qingfeng1   

  1. 1. School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, Shandong, China;
    2. School of Finance, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Published:2025-07-25

摘要: 为了验证基于不同频域尺度捕捉金融时间序列的概率分布不确定性特征可以有效提高VaR模型的度量精度,首次将小波多分辨率分析与非线性期望理论相结合构建W-G-VaR模型,选择美国标准普尔500指数(Standard & Poors 500 composite stock price index, S& P 500 Index)与上证综合指数作为样本进行实证分析。结果表明,相比于G-VaR模型,从时域和频域双视角下构建的W-G-VaR模型在整个样本期间,尤其在重大风险发生期间具有更精确的风险度量结果,且捕捉不确定性时的窗口大小不会影响W-G-VaR模型的优越性。

关键词: 小波多分辨率分析, 非线性期望理论, W-G-VaR模型, 尾部风险

Abstract: In order to verify that capturing the uncertainty features of the probability distribution of financial time series based on different frequency domain scales can effectively improve the measurement accuracy of VaR model, the W-G-VaR model is constructed by combining wavelet multi-resolution analysis with nonlinear expectation theory for the first time. Standard & Poors 500 composite stock price index(S& P 500 Index)and Shanghai(securities)composite index are selected as samples for empirical analysis. The results show that, compared to the G-VaR model, the W-G-VaR model constructed from the dual perspectives of the time domain and the frequency domain has more accurate risk measurement results throughout the sample period, especially during the occurrence of major risks, and the size of the window when capturing uncertainties does not affect the superiority of the W-G-VaR model.

Key words: wavelet multi-resolution analysis, nonlinear expectation theory, W-G-VaR model, tail risk

中图分类号: 

  • O211.9
[1] 宫晓琳,彭实戈,杨淑振,等. 基于不确定性分布的金融风险审慎管理研究[J]. 经济研究,2019,54(7):64-77. GONG Xiaolin, PENG Shige, YANG Shuzhen, et al. Research on prudent management of financial risk based on uncertainty distribution[J]. Economic Research Journal, 2019, 54(7):64-77.
[2] 宫晓琳,杨淑振,孙怡青,等. 基于概率统计不确定性模型的CCA方法[J]. 管理科学学报,2020,23(4):55-64. GONG Xiaolin, YANG Shuzhen, SUN Yiqing, et al. CCA method based on probabilistic statistical uncertainty model[J]. Journal of Management Science, 2020, 23(4):55-64.
[3] 彭实戈. 非线性期望的理论、方法及意义[J]. 中国科学:数学,2017,47(10):1223-1254. PENG Shige. Theory, method and significance of nonlinear expectation[J]. Scientia Sinica Mathematica, 2017, 47(10):1223-1254.
[4] 宫晓琳,杨淑振,胡金焱,等. 非线性期望理论与基于模型不确定性的风险度量[J]. 经济研究,2015,50(11):133-147. GONG Xiaolin, YANG Shuzhen, HU Jinyan, et al. Nonlinear expectation theory and risk measurement based on model uncertainty[J]. Economic Research Journal, 2015, 50(11):133-147.
[5] PEI Ziting, WANG Xishun, XU Yuhong, et al. A worst-case risk measure by G-VaR[J]. Acta Mathematicae Applicatae Sinica, English Series, 2021, 37(2):421-440.
[6] JIN Hanqing, PENG Shige. Optimal unbiased estimation for maximal distribution[EB/OL].(2016-11-23)[2023-07-22]. https://arxiv.org/abs/1611.07994v1.
[7] 彭选华,傅强. 基于小波多尺度分析的GARCH建模方法的拓展[J]. 系统工程理论与实践,2011,31(11):2060-2069. PENG Xuanhua, FU Qiang. Expansion of GARCH modeling method based on wavelet multi-scale analysis[J]. Systems Engineering Theory & Practice, 2011, 31(11):2060-2069.
[8] CHAKRABARTY A, DE A, GUNASEKARAN A, et al. Investment horizon heterogeneity and wavelet: overview and further research directions[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 429:45-61.
[9] HE K J, LAI K K, YEN J. Ensemble forecasting of Value at Risk via multi resolution analysis based methodology in metals markets[J]. Expert Systems with Applications, 2012, 39(4):4258-4267.
[10] FERNANDEZ V. The CAPM and value at risk at different time-scales[J]. International Review of Financial Analysis, 2006, 15(3):203-219.
[11] GENÇAY R, SELÇUK F, WHITCHER B. Systematic risk and timescales[J]. Quantitative Finance, 2003, 3(2):108-116.
[12] FERNANDEZ V, LUCEY B M. Portfolio management under sudden changes in volatility and heterogeneous investment horizons[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 375(2):612-624.
[13] MANCHANDA P, KUMAR J, SIDDIQI A. Mathematical methods for modelling price fluctuations of financial times series[J]. Journal of the Franklin Institute, 2007, 344(5):613-636.
[14] GENÇAY R, GRADOJEVIC N, SELÇUK F, et al. Asymmetry of information flow between volatilities across time scales[J]. Quantitative Finance, 2010, 10(8):895-915.
[15] 方意,和文佳,荆中博. 中美贸易摩擦对中国金融市场的溢出效应研究[J]. 财贸经济,2019,40(6):55-69. FANG Yi, HE Wenjia, JING Zhongbo. Research on the spillover effect of Sino-US trade frictions on Chinas financial market[J]. Finance and Trade Economics, 2019, 40(6):55-69.
[16] 胡春阳,马亚明,马金娅. 重大事件冲击下金融市场与实体经济间双向尾部风险溢出效应[J]. 金融经济学研究,2023,38(2):3-19. HU Chunyang, MA Yaming, MA Jinya. Bidirectional tail risk spillover effect between financial market and real economy under impact of major events[J]. Research in Financial Economics, 2023, 38(2):3-19.
[17] 崔金鑫,邹辉文. 时频视角下国际股市间高阶矩风险溢出效应研究[J]. 国际金融研究,2020,36(6):75-85. CUI Jinxin, ZOU Huiwen. Research on high-moment risk spillover effect between international stock markets from time-frequency perspective[J]. International Finance Research, 2020, 36(6):75-85.
[18] XU Qifa, JIN Bei, JIANG Cuixia. Measuring systemic risk of the Chinese banking industry: a wavelet-based quantile regression approach[J]. The North American Journal of Economics and Finance, 2021, 55:1-13.
[19] PERCIVAL D, WALDEN A. Wavelet methods for time series analysis[M]. Cambridge: Cambridge Press, 2000.
[20] PENG Shige, YANG Shuzhen, YAO Jianfeng. Improving Value-at-Risk prediction under model uncertainty[J]. Journal of Financial Econometrics, 2023, 21(1):228-259.
[21] 许启发,陈士俊,蒋翠侠,等. 极端VaR风险测度的新方法:QRNN+POT[J]. 系统工程学报,2016,31(1):33-44. XU Qifa, CHEN Shijun, JIANG Cuixia, et al. A new method for extreme VaR risk measurement: QRNN+POT[J]. Journal of Systems Engineering, 2016, 31(1):33-44.
[22] SONG Shijia, LI Handong. Predicting VaR for Chinas stock market: a score-driven model based on normal inverse Gaussian distribution[J].International Review of Financial Analysis, 2022, 82:1-20.
[23] 沈悦,李朝前,赵欣悦,等. 重大风险事件下全球股票市场风险传染效应研究[J]. 国际经贸探索,2023,39(4):83-99. SHEN Yue, LI Chaoqian, ZHAO Xinyue, et al. Study on the risk contagion effect of global stock market under major risk events[J]. Journal of International Economic and Trade Exploration, 2023, 39(4):83-99.
[24] TRIMECH A, BENAMMOU S. Multiscale Fama-French and VaR explanatory factor analysis: evidence to the French market[J]. International Journal of Decision Sciences, Risk and Management, 2012, 4(1/2):58-76.
[25] LOPEZ J A. Methods for evaluating Value-at-Risk estimates[J]. Federal Reserve Bank of San Francisco Economic Review, 1999, 2:3-17.
[26] DIEBOLD F, MARIANO R. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 1994, 13(3):253-263.
[1] 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117.
[2] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[3] 杨维强,彭实戈 . 期权稳健定价模型及实证[J]. J4, 2006, 41(2): 69-73 .
[4] 李世龙,刘茜. 融合风险比率的双触发巨灾看跌期权及其定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 12-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!