《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 12-21.doi: 10.6040/j.issn.1671-9352.0.2023.231
李世龙,刘茜
LI Shilong, LIU Xi
摘要: 在普通双触发巨灾看跌期权支付结构中融入基于在险价值(value at risk, VaR)的风险比率,以体现保险公司累积巨灾赔付损失对巨灾期权行权收益的影响和保险公司的风险承受水平。首先,在金融与巨灾乘积概率空间下推导出融合风险比率巨灾看跌期权的定价公式;其次,基于超阈值模型(peak over threshold, POT)模型拟合我国台风的巨灾损失分布以体现巨灾损失的厚尾性特征;最后,利用蒙特卡罗模拟方法对影响巨灾看跌期权的相关因素进行敏感性分析,并与普通巨灾期权进行比较。
中图分类号:
[1] COX S, FAIRCHILD J, PEDERSEN H. Valuation of structured risk management products[J]. Insurance: Mathematics and Economics, 2004, 34(2):259-272. [2] XU Yajuan, WANG Guojing. Pricing catastrophe options with counterparty credit risk in a reduced form model [J]. Acta Mathematica Scientia, 2018, 38(1):347-360. [3] JAIMUNGAL S, WANG T. Catastrophe options with stochastic interest rates and compound Poisson losses[J]. Insurance: Mathematics and Economics, 2006, 38(3):469-483. [4] JIANG I M, YANG S Y, LIU Y H et al. Valuation of double trigger catastrophe options [J]. North American Journal of Economics and Finance, 2013, 25:226-242. [5] BI Hongwei, WANG Guanying, WANG Xingchun. Valuation of catastrophe equity put options with correlated default risk and jump risk[J]. Finance Research Letters, 2019, 29:323-329. [6] WANG Guanying, WANG Xingchun. Catastrophe option pricing with auto-correlated and catastrophe-dependent intensity[J]. Physica A: Statistical Mechanics and its Applications, 2019, 526:120809. [7] YU Jun. Catastrophe options with double compound Poisson processes[J]. Economic Modelling, 2015, 50:291-297. [8] WANG Xingchun. Catastrophe equity put options with floating strike prices[J]. The North American Journal of Economics and Finance, 2020, 54:101211. [9] 胡炳志,吴亚玲. 我国大陆地震巨灾价差期权定价研究[J]. 保险研究,2013,308(12):14-22. HU Bingzhi, WU Yaling. Study on the pricing of our continental earthquake catastrophe spread option[J]. Insurance Studies, 2013, 308(12):14-22. [10] WANG Guanying, WANG Xingchun, SHAO Xinjian. Exchange options for catastrophe risk management[J]. The North American Journal of Economics and Finance, 2022, 59:101580. [11] 林光彬,张志明. 巨灾指数期权定价初探[J]. 中央财经大学学报,2008,2008(8):57-61. LIN Guangbin, ZHANG Zhiming. A preliminary study on catastrophe index option pricing[J]. Journal of Central University of Finance and Economics, 2008, 2008(8):57-61. [12] 谢世清,梅云云. 巨灾期权的保险精算定价探析[J]. 现代财经(天津财经大学学报),2021,31(8):101-107. XIE Shiqing, MEI Yunyun. Analysis of actuarial pricing of catastrophe insurance options[J]. Modern Finance and Economics: Journal of Tianjin University of Finance and Economics, 2021, 31(8):101-107. [13] LEOBACHER G, NGARE P. Utility indifference pricing of derivatives written on industrial loss indices[J]. Journal of Computational and Applied Mathematics, 2016, 300:68-82. [14] 柏满迎,郝军章,翟嘉,等. 巨灾权益连结卖权定价模型研究:基于随机波动率与随机利率条件[J]. 管理工程学报,2019,33(3):170-178. BAI Manying, HAO Junzhang, ZHAI Jia, et al. Research on catastrophe equity linked put pricing model: based on stochastic volatility and stochastic interest rate condition[J]. Journal of Management Engineering, 2019, 33(3):170-178. [15] WANG Xingchun. Valuation of new-designed contracts for catastrophe risk management [J]. The North American Journal of Economics and Finance, 2019, 50:101041. [16] HARRISON J, PLISKA S. Martingales and stochastic integrals in the theory of continuous trading [J]. Stochastic Processes and their Applications, 1981, 11(3):215-260. |
[1] | 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117. |
[2] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[3] | 杨维强,彭实戈 . 期权稳健定价模型及实证[J]. J4, 2006, 41(2): 69-73 . |
|