您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 12-21.doi: 10.6040/j.issn.1671-9352.0.2023.231

• 金融数学 • 上一篇    下一篇

融合风险比率的双触发巨灾看跌期权及其定价

李世龙,刘茜   

  1. 山东财经大学保险学院, 山东 济南 250014
  • 发布日期:2025-03-10
  • 作者简介:李世龙(1979— ),男,教授,博士,研究方向为风险理论与精算. E-mail: lishl@sdufe.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(72171133);山东省自然科学基金资助项目(ZR2020MA036)

Double-triggered catastrophe put option with risk ratio and its pricing

LI Shilong, LIU Xi   

  1. Insurance Institute, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Published:2025-03-10

摘要: 在普通双触发巨灾看跌期权支付结构中融入基于在险价值(value at risk, VaR)的风险比率,以体现保险公司累积巨灾赔付损失对巨灾期权行权收益的影响和保险公司的风险承受水平。首先,在金融与巨灾乘积概率空间下推导出融合风险比率巨灾看跌期权的定价公式;其次,基于超阈值模型(peak over threshold, POT)模型拟合我国台风的巨灾损失分布以体现巨灾损失的厚尾性特征;最后,利用蒙特卡罗模拟方法对影响巨灾看跌期权的相关因素进行敏感性分析,并与普通巨灾期权进行比较。

关键词: 风险比率, 双触发巨灾看跌期权, 乘积概率空间, 超阈值模型

Abstract: In order to reflect both the impact of the accumulated catastrophe compensation loss of insurance companies on the exercise returns of catastrophe options and the risk tolerance level of insurance companies, the risk ratios based on VaR is added into the payment structure of ordinary double triggered catastrophe put options. Firstly, the pricing formula for catastrophe put options with risk ratios is derived in the product probability space of finance and catastrophe; Secondly, the POT model is utilized to fit the distribution of catastrophe loss based on the typhoon catastrophe data in China to display the thick tailed characteristics of catastrophic losses; Finally, the Monte Carlo simulation method is used to analyze the sensitivity of the factors affecting the catastrophe put option and the prices of the catastrophe put options with risk ratios are compared with those of ordinary catastrophe options.

Key words: risk ratio, double-triggered catastrophe put option, product probability space, peak over threshold model

中图分类号: 

  • O211.9
[1] COX S, FAIRCHILD J, PEDERSEN H. Valuation of structured risk management products[J]. Insurance: Mathematics and Economics, 2004, 34(2):259-272.
[2] XU Yajuan, WANG Guojing. Pricing catastrophe options with counterparty credit risk in a reduced form model [J]. Acta Mathematica Scientia, 2018, 38(1):347-360.
[3] JAIMUNGAL S, WANG T. Catastrophe options with stochastic interest rates and compound Poisson losses[J]. Insurance: Mathematics and Economics, 2006, 38(3):469-483.
[4] JIANG I M, YANG S Y, LIU Y H et al. Valuation of double trigger catastrophe options [J]. North American Journal of Economics and Finance, 2013, 25:226-242.
[5] BI Hongwei, WANG Guanying, WANG Xingchun. Valuation of catastrophe equity put options with correlated default risk and jump risk[J]. Finance Research Letters, 2019, 29:323-329.
[6] WANG Guanying, WANG Xingchun. Catastrophe option pricing with auto-correlated and catastrophe-dependent intensity[J]. Physica A: Statistical Mechanics and its Applications, 2019, 526:120809.
[7] YU Jun. Catastrophe options with double compound Poisson processes[J]. Economic Modelling, 2015, 50:291-297.
[8] WANG Xingchun. Catastrophe equity put options with floating strike prices[J]. The North American Journal of Economics and Finance, 2020, 54:101211.
[9] 胡炳志,吴亚玲. 我国大陆地震巨灾价差期权定价研究[J]. 保险研究,2013,308(12):14-22. HU Bingzhi, WU Yaling. Study on the pricing of our continental earthquake catastrophe spread option[J]. Insurance Studies, 2013, 308(12):14-22.
[10] WANG Guanying, WANG Xingchun, SHAO Xinjian. Exchange options for catastrophe risk management[J]. The North American Journal of Economics and Finance, 2022, 59:101580.
[11] 林光彬,张志明. 巨灾指数期权定价初探[J]. 中央财经大学学报,2008,2008(8):57-61. LIN Guangbin, ZHANG Zhiming. A preliminary study on catastrophe index option pricing[J]. Journal of Central University of Finance and Economics, 2008, 2008(8):57-61.
[12] 谢世清,梅云云. 巨灾期权的保险精算定价探析[J]. 现代财经(天津财经大学学报),2021,31(8):101-107. XIE Shiqing, MEI Yunyun. Analysis of actuarial pricing of catastrophe insurance options[J]. Modern Finance and Economics: Journal of Tianjin University of Finance and Economics, 2021, 31(8):101-107.
[13] LEOBACHER G, NGARE P. Utility indifference pricing of derivatives written on industrial loss indices[J]. Journal of Computational and Applied Mathematics, 2016, 300:68-82.
[14] 柏满迎,郝军章,翟嘉,等. 巨灾权益连结卖权定价模型研究:基于随机波动率与随机利率条件[J]. 管理工程学报,2019,33(3):170-178. BAI Manying, HAO Junzhang, ZHAI Jia, et al. Research on catastrophe equity linked put pricing model: based on stochastic volatility and stochastic interest rate condition[J]. Journal of Management Engineering, 2019, 33(3):170-178.
[15] WANG Xingchun. Valuation of new-designed contracts for catastrophe risk management [J]. The North American Journal of Economics and Finance, 2019, 50:101041.
[16] HARRISON J, PLISKA S. Martingales and stochastic integrals in the theory of continuous trading [J]. Stochastic Processes and their Applications, 1981, 11(3):215-260.
[1] 高琦,戴洪帅,武艳华. 基于MPEWMA控制图的串联排队网络的监测与控制[J]. 《山东大学学报(理学版)》, 2023, 58(8): 104-110, 117.
[2] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[3] 杨维强,彭实戈 . 期权稳健定价模型及实证[J]. J4, 2006, 41(2): 69-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[2] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[3] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .
[4] 宋 颖,张兴芳,王庆平 . 参数Kleene系统的α-反向三Ⅰ支持算法[J]. J4, 2007, 42(7): 45 -48 .
[5] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[6] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68 -71 .
[7] 李小南,李璧镜,李生刚 . 新组合概型的生成及其性质[J]. J4, 2006, 41(5): 95 -99 .
[8] 李玉,王贵君*. 一类正则蕴涵算子诱导的DISO模糊系统的构造[J]. 山东大学学报(理学版), 2014, 49(06): 57 -63 .
[9] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[10] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .