您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 34-51.doi: 10.6040/j.issn.1671-9352.0.2023.373

• • 上一篇    

区间犹豫梯形模糊Choquet Muirhead平均算子及其在多属性决策中的应用

江立辉1,徐金辉2,陈华友3   

  1. 1.合肥大学人工智能与大数据学院, 安徽 合肥 230601;2.合肥大学经济与管理学院, 安徽 合肥 230601;3.安徽大学大数据与统计学院, 安徽 合肥 230601
  • 发布日期:2025-07-25
  • 作者简介:江立辉(1980— ),男,教授,硕士,研究方向为预测与决策分析. E-mail:24685003@qq.com
  • 基金资助:
    国家自然科学基金资助项目(72371001);国家级大学生创新创业训练计划项目(202311059041,202311059050);合肥大学研究生创新项目(2024Y);安徽省质量工程项目(2023jyxm0550);安徽省学科(专业)带头人培育项目(DTR2024039)

Interval hesitant trapezoidal fuzzy Choquet Muirhead mean operator and its application in multi-attribute decision making

JIANG Lihui1, XU Jinhui2, CHEN Huayou3   

  1. 1. School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, Anhui, China;
    2. College of Economic and Management, Hefei University, Hefei 230601, Anhui China;
    3. School of Big Data and Statistics, Anhui University, Hefei 230601, Anhui, China
  • Published:2025-07-25

摘要: 为了保证决策信息的完整性,将Muirhead平均算子运用到区间犹豫梯形模糊环境中,提出了区间犹豫梯形模糊Muirhead平均算子、区间犹豫梯形模糊几何Muirhead平均算子的概念。给出了它们的性质及定理,并介绍了算子的几种退化形式。考虑到Choquet积分可以客观的计算属性权重,将Choquet积分引入上述算子,提出了区间犹豫梯形模糊Choquet Muirhead平均算子和区间犹豫梯形模糊几何Choquet Muirhead平均算子的概念。同时构造了基于区间犹豫梯形模糊Choquet Muirhead平均算子的多属性决策模型。最后,将其应用到绿色电池供应商选择问题中,分析其可行性和有效性。

关键词: 区间犹豫梯形模糊集, Choquet积分, Muirhead平均算子, 区间犹豫梯形模糊Choquet Muirhead平均算子, 多属性决策

Abstract: In order to ensure the integrity of decision information, we extend the Muirhead mean operator in the environment of interval hesitant trapezoidal fuzzy sets. The concepts of interval hesitant trapezoidal fuzzy Muirhead mean operator and interval hesitant trapezoidal fuzzy geometric Muirhead mean operator have been proposed. Their properties and theorems are given, and several degenerate forms of the operators are introduced. Considering that the Choquet integral can objectively calculate the weights of attributes, this paper introduces the Choquet integral into the above operators, and proposes the concepts of interval hesitant trapezoidal fuzzy Choquet Muirhead mean operator and interval hesitant trapezoidal fuzzy geometric Choquet Muirhead mean operator. Meanwhile, a multi-attribute decision making model based on interval hesitant trapezoidal fuzzy Choquet Muirhead mean operator is constructed. Finally, it was applied to the green battery supplier selection problem to analyze its feasibility and effectiveness.

Key words: interval hesitant trapezoidal fuzzy set, Choquet integral, Muirhead mean operator, interval hesitant trapezoidal fuzzy Choquet Muirhead mean operator, multi-attribute decision making

中图分类号: 

  • C934
[1] ZADEH L A. Fuzzy sets[J].Information & Control, 1965, 8(3):338-353.
[2] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010:529-539.
[3] CHEN N, XU Z S, XIA M M. Interval-valued hesitant preference relations and their applications to group decision making[J]. Knowledge-Based Systems, 2013, 37:528-540.
[4] 张迪,成央金,杨柳. 区间犹豫梯形模糊Bonferroni Mean算子及其应用[J]. 计算机工程与应用,2020,56(1):53-62. ZHANG Di, CHENG Yangjin, YANG Liu. Interval hesitant trapezoidal fuzzy bonferroni mean operator and its application[J]. Computer Engineering and Applications, 2020, 56(1):53-62.
[5] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1):183-190.
[6] 陈华友,陈诚. 基于I-IOWG算子集结的组合判断矩阵的相容性和一致性[J]. 系统工程与电子技术,2009,31(9):2137-2140. CHEN Huayou, CHEN Cheng. Research on compatibility and consistency of combination judgment matrices based on I-IOWG operators[J]. Systems Engineering and Electronics, 2009, 31(9):2137-2140.
[7] ZHOU L G, CHEN H Y. Continuous generalized OWA operator and its application to decision making[J]. Fuzzy Sets and Systems, 2011, 168(1):18-34.
[8] ZHOU L G, CHEN H Y, MERIGÓ J M, et al. Uncertain generalized aggregation operators[J]. Expert Systems with Applications, 2012, 39(1):1105-1117.
[9] WAN Shuping. Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Mathematical Modelling, 2013, 37(6):4112-4126.
[10] WAN S P, YI Z H. Power average of trapezoidal intuitionistic fuzzy numbers using strict t-norms and t-conorms[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1035-1047.
[11] WAN S P, DONG J Y. Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. Applied Soft Computing Journal, 2015, 29:153-168.
[12] YAGER R R. On generalized Bonferroni mean operators for multi-criteria aggregation[J]. International Journal of Approximate Reasoning, 2009, 50(8):1279-1286.
[13] BELIAKOV G, PRADERA A, CALVO T. Choice and construction of aggregation functions[M] //Studies in Fuzziness and Soft Computing. Berlin: Springer Berlin Heidelberg, 2007:261-269.
[14] MUIRHEAD R F. Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters[J]. Proceedings of the Edinburgh Mathematical Society, 1902, 21:144.
[15] 臧誉琪,韩姗姗,费晓香. q-阶正交犹豫模糊幂Muirhead平均算子及推荐应用[J]. 模糊系统与数学,2020,34(5):90-99. ZANG Yuqi, HAN Shanshan, FEI Xiaoxiang. q-rung orthopair hesitant fuzzy power muirhead mean operators with their application to recommendations[J]. Fuzzy Systems and Mathematics, 2020, 34(5):90-99.
[16] YANG Z L, CHANG J P. A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator[J]. Environmental Research, 2021, 193:110385.
[17] 任耀军,袁修久,黄林,等. 毕达哥拉斯三角犹豫模糊Muirhead平均算子的目标威胁评估应用[J]. 电光与控制,2021,28(4):16-20,63. REN Yaojun, YUAN Xiujiu, HUANG Lin, et al. Pythagorean hesitant triangular fuzzy muirhead mean operator and its application in target threat assessment[J]. Electronics Optics & Control, 2021, 28(4):16-20, 63.
[18] PUNETHA T, KOMAL. Picture fuzzy power Muirhead mean operators and their application to multi attribute decision making[J]. Journal of Industrial and Management Optimization, 2023, 19(6):4321-4349.
[19] IMRAN R, ULLAH K, ALI Z, et al. The theory of prioritized Muirhead mean operators under the presence of complex single-valued Neutrosophic values[J]. Decision Analytics Journal, 2023, 7:100214.
[20] CHOQUET G. Theory of capacities[J]. Annales de LInstitut Fourier, 1954, 5:131-295.
[21] 罗世华,刘俊. 改进排序的梯形直觉模糊Choquet Bonferroni算子的多属性群决策方法[J]. 中国管理科学,2020,28(1):134-143. LUO Shihua, LIU Jun. A novel sort method for trapezoidal intuitionistic fuzzy MAGDM with choquet bonferroni means[J]. Chinese Journal of Management Science, 2020, 28(1):134-143.
[22] 刘超,汤国林,刘宸琦,等. 基于区间对偶犹豫不确定语言广义Banzhaf Choquet积分算子的多属性决策方法[J]. 系统工程理论与实践,2018,38(5):1203-1216. LIU Chao, TANG Guolin, LIU Chenqi, et al. Muti-criteria decision making based on interval-valued dual hesitant uncertain linguistic generalized Banzhaf Choquet integral operator[J]. Systems Engineering-Theory & Practice, 2018, 38(5):1203-1216.
[23] DONG J Y, LIN L L, WANG F, et al. Generalized choquet integral operator of triangular atanassovs intuitionistic fuzzy numbers and application to multi-attribute group decision making[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2016, 24(5):647-683.
[24] 万树平,董九英. 基于三角直觉模糊数Choquet积分算子的多属性决策方法[J]. 中国管理科学,2014,22(3):121-129. WAN Shuping, DONG Jiuying. Multi-attribute decision making based on triangular intuitionistic fuzzy number choquet integral operator[J]. Chinese Journal of Management Science, 2014, 22(3):121-129.
[25] TAN C Q, CHEN X H. Induced intuitionistic fuzzy Choquet integral operator for multicriteria decision making[J]. International Journal of Intelligent Systems, 2011, 26(7):659-686.
[26] PENG J J, WANG J Q, HU J H, et al. Multi-criteria decision-making approach based on single-valued neutrosophic hesitant fuzzy geometric weighted choquet integral heronian mean operator[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(3):3661-3674.
[27] JOSHI D, KUMAR S. Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making[J]. European Journal of Operational Research, 2016, 248(1):183-191.
[28] PENG X D, YANG Y. Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making[J]. International Journal of Intelligent Systems, 2016, 31(10):989-1020.
[29] LIAO Z Q, LIAO H C, TANG M, et al. A choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: case study of higher business education evaluation[J]. Information Fusion, 2020, 62:121-133.
[30] WU Y N, ZHANG T, YI L Q. Regional energy Internet project investment decision making framework through interval type-2 fuzzy number based Choquet integral fuzzy synthetic model[J]. Applied Soft Computing, 2021, 111:107718.
[31] PEREIRA A A, PEREIRA M A. Energy storage strategy analysis based on the choquet multi-criteria preference aggregation model: the Portuguese case[J]. Socio-Economic Planning Sciences, 2023, 85:101437.
[32] WAN S P, YAN J, ZOU W C, et al. Generalized shapley choquet integral operator based method for interactive interval-valued hesitant fuzzy uncertain linguistic multi-criteria group decision making[J]. IEEE Access, 2020, 8:202194-202215.
[33] 陈树伟,蔡丽娜. 区间值犹豫模糊集[J].模糊系统与数学,2013,27(6):38-44. CHEN Shuwei, CAI Lina. Interval-valued Hesitant Fuzzy Sets[J]. Fuzzy Systems and Mathematics, 2013, 27(6):38-44.
[34] SUGENO M. Theory of fuzzy integral and its application[D]. Doc Thesis Tokyo Institute of Technology, 1974:96-102.
[35] MUROFUSHI T, SUGENO M. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227.
[36] QIN J D, LIU X W. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection[J]. Kybernetes, 2016, 45(1):2-29.
[1] 杜文胜. q-阶正交模糊自对偶聚合算子及其应用[J]. 《山东大学学报(理学版)》, 2025, 60(1): 120-126.
[2] 吴维,张贤勇,杨霁琳. 广义区间值q阶orthopair犹豫模糊软集及其多属性决策[J]. 《山东大学学报(理学版)》, 2025, 60(1): 101-110.
[3] 周宇,周礼刚,林志超,徐鑫. 概率q阶犹豫模糊TODIM方法及其应用[J]. 《山东大学学报(理学版)》, 2023, 58(6): 9-17.
[4] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[5] 黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟. 区间值q阶犹豫模糊Frank集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2021, 56(3): 54-66.
[6] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42.
[7] 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9.
[8] 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(08): 62-71.
[9] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78-82.
[10] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[11] 李艳红,王贵君 . 广义模糊值Choquet积分的强序连续与伪S性[J]. J4, 2008, 43(4): 76-80 .
[12] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
[13] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[14] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!