《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 15-25.doi: 10.6040/j.issn.1671-9352.8.2024.013
• • 上一篇
仲尚1,马丽1,2*,刘文哲1,李雨豪1
ZHONG Shang1, MA Li1,2*, LIU Wenzhe1, LI Yuhao1
摘要: 在复杂水面场景下,针对小目标检测精度较低、漏检率高和计算资源有限的问题,提出一种融合多尺度注意力机制和改进特征融合的轻量化水面小目标检测模型。根据中心度理论,设计新的主干网络,利用多尺度注意力机制增强模型的特征提取能力,利用部分卷积从减少特征图冗余的角度改进颈部网络,有效降低模型计算量。使用大型可分离核注意力模块改进快速空间金字塔池化模块,提升模型的特征融合能力。实验结果表明,与其他模型相比,本文模型的检测精度高、漏检率低、参数量少。
中图分类号:
| [1] GIRSHICK R. Fast R-CNN[C] //Proceedings of the IEEE International Conference on Computer Vision(ICCV). Boston: IEEE, 2015:1440-1448. [2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016:779-788. [3] LIU W, ANGUELOW D, ERHAN D, et al. SSD: single shot multibox detector[C] //Proceedings of the 14th European Conference on Computer Vision(ECCV). Berlin: Springer, 2016:21-37. [4] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [5] TAO Kong, YAO Anbang, CHEN Yurong, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016:845-853. [6] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //Proceedings of the 30th IEEE/CVF Confenence on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017:936-944. [7] CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C] //Proceedings of the 13th Asian Conference on Computer Vision. Berlin: Springer, 2016:214-230. [8] 戚玲珑,高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程,2023,49(1):41-48. QI Linglong, GAO Jianling. Small target detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1):41-48. [9] LIN Feng, HOU Tian, JIN Qiannan, et al. Improved YOLO based detection on algoruthm for floating debris in waterway[J]. Entropy, 2021, 23(9):1111. [10] 王林,汪钰婷. 基于加强特征融合的轻量化船舶目标检测[J]. 计算机系统应用,2023,32(2):288-294. WANG Lin, WANG Yuting. Lightweight ship target detection based on enhanced feature fusion[J]. Computer System Applications, 2023, 32(2):288-294. [11] OUYANG Daliang, HE Su, ZHAN Jian, et al. Efficient multi-scale attention moudle with cross-spatial learning[C] //Proceedings of the IEEE Interrnational Conference on Acoustics Speech and Signal Processing(ICASSP). Rhodes Island: IEEE, 2023:1-5. [12] CHEN J R, KAO S, HE H, et al. Run, dont walk: chasing higher flops for faster neural networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver: IEEE, 2023:12021-12031. [13] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236:121352. [14] ZHOU Zhiguo, SUN Jiaen, YU Jiabao, et al. An image-based benchmark dataset and a novel object detector for water surface object detection[J]. Forntiers in Neurorobotics, 2021, 15:723336. [15] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2018:7132-7141. [16] WOO S H, PARK J, LEE J Y, et al. CBAM: convolutional block attenetion module[C] //Proceedings of the 15th European Conference on Computer Vision(ECCV). Munich: Springer, 2018:3-19. |
| [1] | 孙迪,郭义童,任超,范海峰,张传雷. 基于多尺度特征融合与改进注意力的锈蚀螺栓螺帽检测[J]. 《山东大学学报(理学版)》, 2026, 61(1): 1-14. |
| [2] | 陈俊芬,李娜娜,谢博鋆,张杰. 双注意力引导特征融合的半弱监督目标检测[J]. 《山东大学学报(理学版)》, 2025, 60(1): 1-13. |
| [3] | 罗奇,苟刚. 基于聚类和群组归一化的多模态对话情绪识别[J]. 《山东大学学报(理学版)》, 2024, 59(7): 105-112. |
| [4] | 廖祥文,徐阳,魏晶晶,杨定达,陈国龙. 基于双层堆叠分类模型的水军评论检测[J]. 《山东大学学报(理学版)》, 2019, 54(7): 57-67. |
| [5] | 李润川,昝红英,申圣亚,毕银龙,张中军. 基于多特征融合的垃圾短信识别[J]. 山东大学学报(理学版), 2017, 52(7): 73-79. |
| [6] | 于然1,2,刘春阳3*,靳小龙1,王元卓1,程学旗1. 基于多视角特征融合的中文垃圾微博过滤[J]. J4, 2013, 48(11): 53-58. |
|
||