您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 94-102.doi: 10.6040/j.issn.1671-9352.1.2024.752

• • 上一篇    

基于混合变异灰狼优化算法的泊位-岸桥调度

杨玉,孙圣博,徐子瑞,蒋效伟,宋强,戴红伟*   

  1. 江苏海洋大学计算机工程学院, 江苏 连云港 222005
  • 发布日期:2026-01-15
  • 通讯作者: 戴红伟(1975— ),男,教授,硕士生导师,博士,研究方向为智能计算、最优化问题、复杂网络等. E-mail:hwdai@jou.edu.cn
  • 作者简介:杨玉(1979— ),女,副教授,硕士生导师,博士,研究方向为智能计算与最优化. E-mail:yangyu@jou.edu.cn*通信作者:戴红伟(1975— ),男,教授,硕士生导师,博士,研究方向为智能计算、最优化问题、复杂网络等. E-mail:hwdai@jou.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62373171);全国高等院校计算机基础教育研究会教学研究项目(2023-AFCEC-307);江苏省计算机学会教学类项目(JSCS2022028);江苏省大学生创新创业项目(202211641027Z,202311641003Z)

Hybrid mutation based gray wolf optimization algorithm for berth-quay crane scheduling

YANG Yu, SUN Shengbo, XU Zirui, JIANG Xiaowei, SONG Qiang, DAI Hongwei*   

  1. School of Computer Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
  • Published:2026-01-15

摘要: 为解决灰狼优化(grey wolf optimizer, GWO)算法收敛速度慢、易陷入局部最优等问题,提出一种基于混合变异的灰狼优化(hybrid mutation grey wolf optimizer, HMGWO)算法。采用Tent混沌映射策略初始化种群,融入自适应收敛因子策略平衡搜索多样性,引入高斯-柯西混合变异策略提高算法性能。利用6个基准测试函数进行仿真实验,从寻优能力与收敛性等方面对HMGWO算法进行综合分析。将HMGWO算法应用于离散泊位-岸桥调度问题,1 000次迭代实验后,HMGWO算法的船舶在港时间最短。

关键词: 灰狼优化算法, 混合变异, 混沌映射, 自适应收敛因子, 泊位-岸桥调度

Abstract: In order to address the issues of slow convergence speed and susceptibility to local optimality in the gray wolf optimizer(GWO)algorithm, a hybrid mutation gray wolf optimizer(HMGWO)algorithm is proposed. This new algorithm is based on hybrid mutation and utilizes the Tent chaotic mapping strategy. The population is initialized, and an adaptive convergence factor strategy is incorporated to maintain search diversity. Additionally, the algorithm introduces the Gaussian-Cauchy hybrid mutation strategy to enhance performance. Six benchmark test functions are utilized for simulation experiments, evaluating the HMGWO algorithms optimization capability and convergence. The HMGWO algorithm was applied to the discrete berth-quay crane scheduling problem. After one thousand iterations in experiments, the HMGWO algorithm spent the shortest time for ships in port.

Key words: grey wolf optimization algorithm, hybrid mutation, chaotic mapping, adaptive convergence factor, berth-quay crane scheduling

中图分类号: 

  • TP181
[1] 冯小欧,杨瑾,袁培燕. 港口集装箱码头泊位与岸桥的多阶段协作调度仿真研究[J]. 实验室研究与探索,2023,42(6):84-89. FENG Xiaoou, YANG Jin, YUAN Peiyan. Simulation research on multi-stage cooperative scheduling of berth and quay crane in container terminals of port[J]. Research and Exploration in Laboratory, 2023, 42(6):84-89.
[2] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61.
[3] SUN Hongbin, CUI Qing, WEN Jingya, et al. Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM[J]. Energy Reports, 2024, 11:1487-1502.
[4] LI Zhenbi, FENG Xueyan, WANG Li, et al. DC-DC circuit fault diagnosis based on GWO optimization of 1DCNN-GRU network hyperparameters[J]. Energy Reports, 2023, 9(2):536-548.
[5] TIAN Ying, YU Junqi, ZHAO Anjun, et al. Predictive model of energy consumption for office building by using improved GWO-BP[J]. Energy Reports, 2020, 6:620-627.
[6] RASMIRANJAN M, RAJASHREE D. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10):9889-9904.
[7] 李长安,谢宗奎,吴忠强,等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工业大学学报,2021,53(1):101-108. LI Changan, XIE Zongkui, WU Zhongqiang, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institude of Technolocy, 2021, 53(1):101-108.
[8] 李全耀,沈艳霞. 一种基于教与学的混合灰狼优化算法[J]. 控制与决策,2022,37(12):3190-3196. LI Quanyao, SHEN Yanxia. A hybrid gray wolf optimization algorithm based on the teaching-learning optimization[J]. Control and Decision, 2022, 37(12):3190-3196.
[9] 张铸,饶盛华,张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策,2021,36(10):2562-2568. ZHANG Zhu, RAO Shenghua, ZHANG Shijie. Gravity salp swarm algorithm based on adaptive normal cloud model[J]. Control and Decision, 2021, 36(10):2562-2568.
[10] 王秋萍,王梦娜,王晓峰. 改进收敛因子和比例权重的灰狼优化算法[J]. 计算机工程与应用,2019,55(21):60-65. WANG Qiuping, WANG Mengna, WANG Xiaofeng. Improved grey wolf optimizer with convergence factor and proportional weight[J]. Computer Engineering and Applications, 2019, 55(21):60-65.
[11] 秦宏伍,王立铮,傅渝,等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版),2024,59(3):51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al. Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University(Natural Science), 2024, 59(3):51-60.
[12] 刘哲,马俊飞,陈佳峰,等. 基于改进灰狼算法的舰载机弹药保障调度优化[J]. 系统工程与电子技术,2024,46(4):1264-1272. LIU Zhe, MA Junfei, CHEN Jiafeng, et al. Carrier-based aircraft ammunition support scheduling optimization based on improved grey wolf optimizer algorithm[J]. Systems Engineering and Electronics, 2024, 46(4):1264-1272.
[13] HASAN D, ERDAL E, HALIL MÜ. A new hybrid approach using GWO and MFO algorithms to detect network attack[J]. CMES-Computer Modeling in Engineering and Sciences, 2023, 136(2):1277-1314.
[14] RASMIRANJAN M, RAJASHREE D. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10):9889-9904.
[15] 滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报,2018,50(11): 40-49. TENG Zhijun, LÜ Jinling, GUO Liwen, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11):40-49.
[16] 张娜,赵泽丹,包晓安,等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策,2020,35(4):893-900. ZHANG Na, ZHAO Zedan, BAO Xiaoan, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4):893-900.
[17] 潘劲成,李少波,周鹏,等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用,2023,59(22):92-110. PAN Jincheng, LI Shaobo, ZHOU Peng, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22):92-110.
[18] XUE Jiankai, SHEN Bo. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7):7305-7336.
[19] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[20] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97:849-872.
[21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
[22] 崔晨宇,董泽,王旭光. 一种改进的非洲秃鹫算法[J]. 计算机仿真,2023,40(11):311-318. CUI Chenyu, DONG Ze, WANG Xuguang. An improved african vulture algorithm[J]. Computer Simulation, 2023, 40(11):311-318.
[23] 周明月,周明伟,刘桂岐,等. 基于改进蝴蝶算法的机械臂时间最优轨迹规划[J]. 计算机科学,2023,50(S2):119-126. ZHOU Mingyue, ZHOU Mingwei, LIU Guiqi, et al.Time optimal trajectory planning of manipulator based on improved butterfly algorithm[J]. Computer Science, 2023, 50(S2):119-126.
[24] JI Bin, HUANG Han, YU S S. An enhanced NSGA-II for solving berth allocation and quay crane assignment problem with stochastic arrival times[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(A):459-473.
[25] 嵇玉峰,蒋美仙,周健,等. 考虑岸桥移动的泊位-岸桥容量规划问题研究[J]. 浙江工业大学学报,2023,51(1):59-7. JI Yufeng, JIANG Meixian, ZHOU Jian, et al. Research on berths and quay cranes capacity planning considering the movement of quay cranes[J]. Journal of Zhejiang University of Technology, 2023, 51(1):59-71.
[26] 王日栋. 基于多目标烟花算法的泊位-岸桥整合调度研究[J]. 内蒙古大学学报(自然科学版),2023,54(1):104-112. WANG Ridong. Research on berth-quay crane assignment problem based on multi-objective fireworks algorithm[J]. Journal of Inner Mongolia University(Natural Science Edition), 2023, 54(1):104-112.
[1] 秦宏伍,王立铮,傅渝,隋沐翾,何秉高. 基于多策略结合的灰狼优化算法及应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 51-60.
[2] 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!