《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 94-102.doi: 10.6040/j.issn.1671-9352.1.2024.752
• • 上一篇
杨玉,孙圣博,徐子瑞,蒋效伟,宋强,戴红伟*
YANG Yu, SUN Shengbo, XU Zirui, JIANG Xiaowei, SONG Qiang, DAI Hongwei*
摘要: 为解决灰狼优化(grey wolf optimizer, GWO)算法收敛速度慢、易陷入局部最优等问题,提出一种基于混合变异的灰狼优化(hybrid mutation grey wolf optimizer, HMGWO)算法。采用Tent混沌映射策略初始化种群,融入自适应收敛因子策略平衡搜索多样性,引入高斯-柯西混合变异策略提高算法性能。利用6个基准测试函数进行仿真实验,从寻优能力与收敛性等方面对HMGWO算法进行综合分析。将HMGWO算法应用于离散泊位-岸桥调度问题,1 000次迭代实验后,HMGWO算法的船舶在港时间最短。
中图分类号:
| [1] 冯小欧,杨瑾,袁培燕. 港口集装箱码头泊位与岸桥的多阶段协作调度仿真研究[J]. 实验室研究与探索,2023,42(6):84-89. FENG Xiaoou, YANG Jin, YUAN Peiyan. Simulation research on multi-stage cooperative scheduling of berth and quay crane in container terminals of port[J]. Research and Exploration in Laboratory, 2023, 42(6):84-89. [2] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. [3] SUN Hongbin, CUI Qing, WEN Jingya, et al. Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM[J]. Energy Reports, 2024, 11:1487-1502. [4] LI Zhenbi, FENG Xueyan, WANG Li, et al. DC-DC circuit fault diagnosis based on GWO optimization of 1DCNN-GRU network hyperparameters[J]. Energy Reports, 2023, 9(2):536-548. [5] TIAN Ying, YU Junqi, ZHAO Anjun, et al. Predictive model of energy consumption for office building by using improved GWO-BP[J]. Energy Reports, 2020, 6:620-627. [6] RASMIRANJAN M, RAJASHREE D. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10):9889-9904. [7] 李长安,谢宗奎,吴忠强,等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工业大学学报,2021,53(1):101-108. LI Changan, XIE Zongkui, WU Zhongqiang, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institude of Technolocy, 2021, 53(1):101-108. [8] 李全耀,沈艳霞. 一种基于教与学的混合灰狼优化算法[J]. 控制与决策,2022,37(12):3190-3196. LI Quanyao, SHEN Yanxia. A hybrid gray wolf optimization algorithm based on the teaching-learning optimization[J]. Control and Decision, 2022, 37(12):3190-3196. [9] 张铸,饶盛华,张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策,2021,36(10):2562-2568. ZHANG Zhu, RAO Shenghua, ZHANG Shijie. Gravity salp swarm algorithm based on adaptive normal cloud model[J]. Control and Decision, 2021, 36(10):2562-2568. [10] 王秋萍,王梦娜,王晓峰. 改进收敛因子和比例权重的灰狼优化算法[J]. 计算机工程与应用,2019,55(21):60-65. WANG Qiuping, WANG Mengna, WANG Xiaofeng. Improved grey wolf optimizer with convergence factor and proportional weight[J]. Computer Engineering and Applications, 2019, 55(21):60-65. [11] 秦宏伍,王立铮,傅渝,等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版),2024,59(3):51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al. Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University(Natural Science), 2024, 59(3):51-60. [12] 刘哲,马俊飞,陈佳峰,等. 基于改进灰狼算法的舰载机弹药保障调度优化[J]. 系统工程与电子技术,2024,46(4):1264-1272. LIU Zhe, MA Junfei, CHEN Jiafeng, et al. Carrier-based aircraft ammunition support scheduling optimization based on improved grey wolf optimizer algorithm[J]. Systems Engineering and Electronics, 2024, 46(4):1264-1272. [13] HASAN D, ERDAL E, HALIL MÜ. A new hybrid approach using GWO and MFO algorithms to detect network attack[J]. CMES-Computer Modeling in Engineering and Sciences, 2023, 136(2):1277-1314. [14] RASMIRANJAN M, RAJASHREE D. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10):9889-9904. [15] 滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报,2018,50(11): 40-49. TENG Zhijun, LÜ Jinling, GUO Liwen, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11):40-49. [16] 张娜,赵泽丹,包晓安,等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策,2020,35(4):893-900. ZHANG Na, ZHAO Zedan, BAO Xiaoan, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4):893-900. [17] 潘劲成,李少波,周鹏,等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用,2023,59(22):92-110. PAN Jincheng, LI Shaobo, ZHOU Peng, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22):92-110. [18] XUE Jiankai, SHEN Bo. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7):7305-7336. [19] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. [20] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97:849-872. [21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67. [22] 崔晨宇,董泽,王旭光. 一种改进的非洲秃鹫算法[J]. 计算机仿真,2023,40(11):311-318. CUI Chenyu, DONG Ze, WANG Xuguang. An improved african vulture algorithm[J]. Computer Simulation, 2023, 40(11):311-318. [23] 周明月,周明伟,刘桂岐,等. 基于改进蝴蝶算法的机械臂时间最优轨迹规划[J]. 计算机科学,2023,50(S2):119-126. ZHOU Mingyue, ZHOU Mingwei, LIU Guiqi, et al.Time optimal trajectory planning of manipulator based on improved butterfly algorithm[J]. Computer Science, 2023, 50(S2):119-126. [24] JI Bin, HUANG Han, YU S S. An enhanced NSGA-II for solving berth allocation and quay crane assignment problem with stochastic arrival times[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(A):459-473. [25] 嵇玉峰,蒋美仙,周健,等. 考虑岸桥移动的泊位-岸桥容量规划问题研究[J]. 浙江工业大学学报,2023,51(1):59-7. JI Yufeng, JIANG Meixian, ZHOU Jian, et al. Research on berths and quay cranes capacity planning considering the movement of quay cranes[J]. Journal of Zhejiang University of Technology, 2023, 51(1):59-71. [26] 王日栋. 基于多目标烟花算法的泊位-岸桥整合调度研究[J]. 内蒙古大学学报(自然科学版),2023,54(1):104-112. WANG Ridong. Research on berth-quay crane assignment problem based on multi-objective fireworks algorithm[J]. Journal of Inner Mongolia University(Natural Science Edition), 2023, 54(1):104-112. |
| [1] | 秦宏伍,王立铮,傅渝,隋沐翾,何秉高. 基于多策略结合的灰狼优化算法及应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 51-60. |
| [2] | 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51. |
|
||